
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
A BEST EFFORT TRAFFIC MANAGEMENT SOLUTION
FOR SERVER AND AGENT-BASED ACTIVE NETWORK

MANAGEMENT (SAAM)

by

Corey D. Wofford

March 2002

 Thesis Advisor: Geoffrey Xie
 Co-Advisor: James Bret Michael

Approved for public release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and
Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 2002
3. REPORT TYPE AND DATES COVERED

Master’s Thesis
4. TITLE AND SUBTITLE
A Best Effort Traffic Management Solution for Server and Agent-based Active Network Management
(SAAM)

5. FUNDING NUMBERS

6. AUTHOR (S) Corey D. Wofford
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
DARPA, NASA

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER
G417

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the U.S. Department of Defense or the U.S.
Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE
Statement A

13. ABSTRACT (maximum 200 words)

 Server and Agent-based Active Network Management (SAAM) is a promising network management solution for the

Internet of tomorrow, “Next Generation Internet (NGI).” SAAM is a new network architecture that incorporates many of the

latest features of Internet technologies. The primary purpose of SAAM is managing network quality of service (QoS) to support

the resource-intensive next-generation Internet applications.

Best effort (BE) traffic will continue to exist in the era of NGI. Thus SAAM must be able to manage such traffic. In this thesis,

we propose a solution for management of BE traffic within SAAM. With SAAM, it is possible to make a “better best effort” in

routing BE packets. Currently, routers handle BE traffic based solely on local information or from information obtained by link-

state flooding which may not be reliable. In contrast, SAAM centralizes management at a server where better (more optimal)

decisions can be made. SAAM’s servers have access to accurate topology and timely traffic-condition information. Additionally,

due to their placement on high-end routers or dedicated machines, the servers can better afford computationally intensive routing

solutions. It is these characteristics that are exploited by the solution design and implementation of this thesis.

14. SUBJECT TERMS
Next Generation Internet, Quality of Service, Best Effort Traffic, Networks, Routing, Resource Management

15. NUMBER OF PAGES
163

 16. PRICE CODE
17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

 Prescribed by ANSI Std. 239-18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

Approved for public release; distribution is unlimited.

A BEST EFFORT TRAFFIC MANAGEMENT SOLUTION FOR SERVER AND
AGENT-BASED ACTIVE NETWORK MANAGEMENT (SAAM)

Corey Wofford
Lieutenant, United States Navy

B.S., Michigan State University, 1995

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2002

Author: Corey Wofford

Approved by: Geoffrey Xie, Thesis Advisor

James Bret Michael, Co-Advisor

Chris Eagle, Chairman
Department of Computer Science

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

Server and Agent-based Active Network Management (SAAM) is a promising

network management solution for the Internet of tomorrow, “Next Generation Internet

(NGI).” SAAM is a new network architecture that incorporates many of the latest

features of Internet technologies. The primary purpose of SAAM is managing network

quality of service (QoS) to support the resource-intensive next-generation Internet

applications.

Best effort (BE) traffic will continue to exist in the era of NGI. Thus SAAM

must be able to manage such traffic. In this thesis, we propose a solution for

management of BE traffic within SAAM. With SAAM, it is possible to make a “better

best effort” in routing BE packets. Currently, routers handle BE traffic based solely on

local information or from information obtained by link-state flooding which may not be

reliable. In contrast, SAAM centralizes management at a server where better (more

optimal) decisions can be made. SAAM’s servers have access to accurate topology and

timely traffic-condition information. Additionally, due to their placement on high-end

routers or dedicated machines, the servers can better afford computationally intensive

routing solutions. It is these characteristics that are exploited by the solution design and

implementation of this thesis.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. MOTIVATION.. 1
B. PROBLEM STATEMENT AND APPROACH ... 6
C. THESIS SCOPE .. 7
D. CONTRIBUTIONS OF THIS THESIS .. 8

1. Major Contributions ... 8
2. Minor Contributions ... 8

E. THESIS ORGANIZATION ... 8

II. BACKGROUND.. 11
A. BEST EFFORT VS. QUALITY-OF-SERVICE TRAFFIC...................... 11
B. BEST EFFORT ROUTING IN TODAY’S INTERNET........................... 12

1. Intradomain Routing .. 13
a. Static Configuration... 13
b. Distance Vector Protocols .. 14
c. Link State Protocols ... 14

2. Interdomain Routing... 15
C. THE STATE OF THE ART... 16

1. Routing Solutions .. 17
2. Management Solutions.. 18
3. Traffic Engineering ... 20

III. BUILDING A BETTER BEST EFFORT SOLUTION... 23
A. CURRENT STATE OF SAAM PROTOTYPE.. 23
B. REQUIREMENTS FOR A BETTER SOLUTION 24

1. Security... 24
2. Light-Weight Routers ... 24
3. Interoperability.. 25
4. Fault Tolerance.. 25
5. Fairness .. 25
6. Adaptive Response Mechanisms.. 25
7. Stability .. 25
8. Intelligent Provisioning... 26
9. Scalability... 26
10. Packet Recovery .. 26

C. INSPIRATION .. 26
D. DESIGN.. 28

1. Best Effort Table Agent .. 30
a. Destination Management ... 31
b. Load Balancing .. 32
c. Fault Tolerance .. 33

2. Best Effort Manager.. 33

 vii

a. Best Effort Topology Maintenance.. 34
b. Reactive Monitoring ... 35
c. Proactive Monitoring ... 35

3. Routing Algorithms... 36
a. Shortest Widest Path (SWP)... 37
b. Shortest Widest Most Disjoint Path (SWMDP)..................... 37
c. Shortest Widest Least Congested Path (SWLCP) 38

4. Traffic Splitting ... 38
5. Control Timing .. 40

a. Auto-configuration Cycle Time ... 42
b. Redirection Interval.. 43
c. Reversion Interval .. 43
d. Congestion Bypass Time .. 44
e. Path Expiration Interval .. 44
f. Failure Detection / Response Time.. 45
g. Local Resolution Timeout .. 45

6. Messages... 45
a. Edge Notification.. 46
b. Best Effort Table Entry .. 46
c. CongestionAdvisory.. 47

E. STATE ANALYSIS .. 47
1. Single Node Pair Management... 48
2. Destination Management.. 49
3. Path Management ... 50

F. DESIGN TRADEOFFS .. 50
1. Maintaining BE Link Provision... 51
2. Degree of Management Centralization ... 51
3. Management Focus ... 51
4. Granularity of Load Balancing.. 52
5. Granularity of Fairness Enforcement ... 52

IV. SAAM IMPLEMENTATION DETAILS ... 55
A. CHANGES TO EXISTING SAAM CODE .. 55

1. Flow Generator.. 55
a. Elimination of BE Flow Requests ... 55
b. Random Source Addressing for BE Packets 55

2. Server Agent .. 56
3. Control Executive.. 56

a. Router Classification Data Members and Get Methods 56
b. Router Status Display... 56
c. BE Management... 56

4. Demonstration Initiation Information .. 57
5. Flow Request.. 57
6. Flow Routing Table Entry.. 57
7. Message .. 57
8. Routing Algorithm .. 57

 viii

a. BE Packet Recognition and Handling 57
b. Requeueing Capabilities... 58

9. Transport Interface... 58
10. Base Path Information Base ... 58

a. Interfaces for Best Effort Manager 58
b. New Routing Algorithms.. 58
c. Inner Class Path... 59
d. Access Modifiers... 60

11. Server.. 60
a. Auto-Configuration Cycle Sharing 60
b. Communications... 60

B. ADDITION OF NEW CAPABILITIES.. 61
1. Best Effort Manager.. 61
2. Best Effort Table ... 61
3. Messages... 62

a. Best Effort Table Entry .. 62
b. Edge Notification.. 62
c. CongestionAdvisory.. 62

V. TESTS AND RESULTS.. 63
A. EDGE ROUTER DISCOVERY AND PACKET REQUEUEING........... 63

1. Test.. 64
2. Results .. 64

B. LOAD BALANCING.. 65
1. Test.. 66
2. Results .. 67

C. CONGESTION BYPASS ... 69
1. Test.. 70
2. Results .. 70

D. FAIRNESS ... 71
1. Test.. 71
2. Results .. 72

E. PERIPHERY UTILIZATION ... 72
1. Test.. 73
2. Results .. 74

F. COMPARATIVE BENEFIT.. 74
1. Test.. 75
2. Results .. 75

VI. CONCLUSIONS AND RECOMMENDATIONS.. 77
A. CONCLUSIONS.. 77

1. Requirements Revisited .. 77
a. Security ... 77
b. Light-Weight Routers ... 77
c. Interoperability ... 77
d. Fault Tolerance .. 77

 ix
e. Fairness .. 77

f. Adaptive Response Mechanisms .. 77
g. Stability ... 78
h. Scalability.. 78
i. Intelligent Provisioning.. 78
j. Packet Recovery.. 78

2. Overall .. 78
B. RECOMMENDATIONS FOR FUTURE WORK..................................... 78

1. A Border Gateway Agent ... 79
2. Security Features... 79
3. Deployable Agents ... 79
4. Fine Tuning of Parameters... 79
5. An Even Better Best Effort... 79
6. Implementation of Other Algorithms.. 80
7. Refinement of Fairness Approach ... 80

APPENDIX A: GLOSSARY.. 81

APPENDIX B: LIST OF ACRONYMS.. 87

APPENDIX C: BEST EFFORT MANAGER SOURCE CODE 91

APPENDIX D: BEST EFFORT TABLE AGENT SOURCE CODE 111

APPENDIX E: CONGESTION ADVISORY MESSAGE SOURCE CODE................ 121

APPENDIX F: MODIFICATIONS TO ROUTING ALGORITHM SOURCE CODE123

APPENDIX G: MODIFICATIONS TO BASE PATH INFORMATION BASE
SOURCE CODE.. 129

APPENDIX H: MODIFICATIONS TO OTHER SAAM SOURCE CODE................. 139

LIST OF REFERENCES ... 141

INITIAL DISTRIBUTION LIST .. 143

 x

LIST OF FIGURES

Figure 1. Base Allocation per Service Level (From [9]) .. 3
Figure 2. SAAM Hierarchy (From [12]) .. 4
Figure 3. Old Routing Method (modified from [12]) ... 28
Figure 4. New Routing Method (modified from [12]) ... 29
Figure 5. Server / Edge Router Communication .. 30
Figure 6. A Best Effort Traffic Routing Table ... 30
Figure 7. Multipath Load Balancing... 32
Figure 8. Hashing Traffic into Buckets .. 39
Figure 9. Load Balancing By Bucket Path Mapping.. 40
Figure 10. Best Effort Management State Diagram ... 48
Figure 11. Destination Management State Diagram... 49
Figure 12. Path Management State Diagram.. 50
Figure 13. BestEffortManager Class Structure... 61
Figure 14. BestEffortTable Class Structure.. 62
Figure 15. Discovery / Requeueing Test Topology.. 64
Figure 16. Edge Discovery ... 64
Figure 17. BE Route Deployment .. 65
Figure 18. Flow Routing Entries to Support BE... 65
Figure 19. 100 Packet Generation .. 65
Figure 20. Receipt of 100th Packet.. 65
Figure 21. Load Balancing Test Topology ... 66
Figure 22. Test Agent for Load Balancing ... 67
Figure 23. Primary Path Loss Rate vs. Time for Load Balancing Test 68
Figure 24. Load Balancing Test Final Split.. 68
Figure 25. Congestion Bypass Test Topology.. 70
Figure 26. Congestion Bypass Test Results ... 70
Figure 27. Fairness Test Topology ... 71
Figure 28. Fairness Test Results... 72
Figure 29. Periphery Utilization Test ... 73
Figure 30. Periphery Utilization Test Results... 74
Figure 31. Loss Rate Comparison With and Without Load Balancing 75

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

LIST OF TABLES

Table 1. Best Effort Traffic Control Timing ... 42
Table 2. Edge Notification Message Format... 46
Table 3. Best Effort Table Entry Message Format.. 46
Table 4. Congestion Advisory Message Format ... 47
Table 5. Load Balancing Test Parameters... 75

 xiii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiv

ACKNOWLEDGEMENTS

 I give thanks to God for life, wisdom, and salvation through his Son.

 I thank DARPA and NASA, whose funding made this project possible.

 I would especially like to thank my advisor, Geoffrey Xie. He was there for me

100% and was my teacher from start to finish. Through the course of working with this

man, I learned so much more than just technical knowledge. Thanks to him, I’ve come

away not just with improved research skills, but a deeper passion for computer networks

as well.

 I greatly appreciate the time and efforts of Bret Michael, my co-advisor. He

devoted enormous amounts of time and energy in helping me polish my final product.

From him, I learned quite a bit about technical writing as well as greater discipline in

research and development.

 I also thank Cary Colwell without whom I would have had to sacrifice a great

deal of quality. His coaching on the technical aspects of the SAAM architecture proved

invaluable. I’ll always remember those long days in the lab with Cary as my sole

companion. I consider him a friend.

 My wife and children supported me the whole way and for that I am grateful.

Without their support, none of this would have been possible. Billie was my Proverbs 31

woman. My children’s hugs after dog days kept my spirits up.

 Last, but not least, I thank my parents Dale and Gayle. I have the deepest respect

for their marriage and for them as people. They’ve stayed true to each other and they’ve

stayed true to me. I draw a great deal of strength from them. They are a rock for me.

 xv

THIS PAGE INTENTIONALLY LEFT BLANK

 xvi

EXECUTIVE SUMMARY

 The Internet was born out of an experimental project in the late 1960’s, funded by

the Advanced Research Projects Agency (ARPA). Since then, the Internet has exploded

into a worldwide phenomenon with millions of hosts to include private citizens,

businesses, schools, governments, and of course, the DoD (the original customer).

 The Internet came to be defined by an underlying core technology known as

TCP/IP. This model/protocol has proved immensely scalable in terms of meeting the

data transfer demands of the ever-growing amount of hosts, data, and links; it’s simply a

matter of adding more resources. Unfortunately, there are new demands today above and

beyond “data transfer” that TCP/IP is not built to handle. These are the demands for

Quality of Service (QoS). The TCP/IP model is a “best effort” model. That is, much like

regular mail at the Post Office, the Internet will simply make a best effort to get the data

to where it’s addressed with no explicit guarantee of delivery time or success rate. For

many of today’s cutting edge applications in use by DoD and elsewhere, guarantees of

service quality are required.

 A project known as Server and Agent-based Active Network Management

(SAAM) under the Next Generation Internet (NGI) initiative has as its goal the

identification of solutions that could provide guaranteed QoS while still maintaining the

simplicity and robustness of the underlying TCP/IP architecture. As of this writing,

SAAM has done just that. After three years in research and development at the Naval

Postgraduate School, SAAM has become a somewhat comprehensive solution that

addresses not only issues of QoS, but also security, fault-tolerance, and policy

management among others. One of the last areas to be developed for SAAM is its

management of best effort traffic, the type of traffic that exists in the Internet today.

Such interoperability with and management of best effort traffic is required in order for

SAAM to viably deploy and integrate into today’s Internet. That is the topic of this

thesis.

 This thesis develops a solution for best effort traffic management to incorporate

into SAAM. First, best effort traffic management is researched through open sources for

critical evaluation of previously developed ideas and whether or not they are applicable

 xvii

to the SAAM model. Next, the SAAM architecture is studied in order to leverage

SAAM’s core strengths and ensure the best fit for a modular solution. Finally, the

solution is designed, developed, integrated into SAAM, and tested for satisfactory

performance. Conclusions are drawn and recommendations are made for possible future

work in refining best effort traffic management for SAAM.

 xviii

I. INTRODUCTION

A. MOTIVATION
The SAAM architecture has been and is currently being designed with NGI in

mind for which increasingly sophisticated applications will be provided QoS guarantees

for their data flows within a region of SAAM routers. Research on SAAM revolved

around various QoS parameters and path constraints and how to manage those constraints

in terms of Admission Control and Resource Management. If the Internet would

instantly transform into the so-called NGI, this would be the end of the matter. All traffic

would be preceded by resource reservation requests (a “flow request”) to a SAAM server.

Of course, as with most new computer network technology, it would be naïve to imagine

a flip-of-the-switch technology conversion and forego any consideration of backwards

compatibility.

If SAAM were deployed as is, on the assumption that all flows will be preceded

by flow requests or reside within an aggregate Differentiated Service (DiffServ) level, a

number of adverse consequences could arise. For one, a user internal to a SAAM region

may be unnecessarily denied service until someone proficient with the SAAM client

software can properly configure his/her device. For something as simple as viewing a

static web page or sending an email message, such effort is questionable. Second, an

autonomous system (AS) adopting the SAAM architecture may inadvertently violate

service level agreements with neighboring AS’s for carrying transit traffic. In reality,

some of the applications on internal hosts and border routers in external Internet regions

will continue to operate on the same assumption underlying today’s Internet, the best

effort model. The traffic these applications send and receive is known as best effort

traffic. While specialized protocols and data exchange methods abound, it is universally

understood and assumed that best effort (BE) traffic, when sent, will be handled

according to uniform standards set forth by the Internet Engineering Task Force (IETF).

Indeed, misbehavior by these standards can be punishable through “black holing,”

whereby Internet names and address entries are removed from the governing hierarchy

tables, a logical severance from communications with the rest of the Internet.

 1

The question to be explored here is the manner in which to handle BE traffic.

Presumably, clients of a SAAM network provider will still have demand for BE services.

While these may not generate as much revenue as QoS streams per unit of bandwidth

consumed, SAAM must handle this traffic in a satisfactory manner to meet the needs of

the customer and the expectations of the universal Internet. Further, the client will expect

at least the same guarantee for BE traffic that the Internet already provides: a best effort

(i.e., SAAM cannot arbitrarily drop or misroute packets unless constrained).

Until now, the question of how to characterize and handle BE traffic within a

SAAM region has been left unanswered, but not locked out. That is, SAAM already has

a couple of building blocks within its architecture into which BE traffic could be easily

shoehorned. Indeed, these building blocks were designed as possible hooks with an eye

towards reaching an ultimate solution in the future. Now that the cement is drying on the

fundamental QoS portion of the architecture (SAAM’s charter), a look towards how to

now incorporate BE management into the total solution is appropriate. One possibility

has always been SAAM’s DiffServ solution. Conventionally, DiffServ has been divided

into aggregate levels of standard QoS guarantees. One division, familiarly known as the

“Olympic model of DiffServ” is Gold, Silver, and Bronze. If Bronze’s QoS guarantee

was simply best effort with no regard for delay, bandwidth, jitter, or loss rate, than this

could be the service level to encapsulate BE traffic. The SAAM region would have to be

pre-configured such that every end-to-end path (or point-to-point link in a slightly

different scheme) would have an existing approved Bronze flow. The second solution is

static provision of links. SAAM currently sets initial bandwidth reservations on each link

for Control Traffic, Integrated Service (IntServ), DiffServ, Best Effort, Unallocated, and

Out-of-Profile. As shown in Figure 1, BE receives an initial 15% of the link in this

scheme. While the provisions for IntServ and DiffServ are dynamic (they change with

load conditions), the provision for best effort is fixed at 15%. This allocation is a

minimum since BE can also use whatever bandwidth QoS is not fully utilizing at the

time. In earlier SAAM design efforts, BE’s provision was set at 20% in order to prevent

starvation of BE traffic [8]. Later, this level was reduced to 15% as part of the inter-

service borrowing solution developed in [9]. No testing has been conducted on any

 2

Internet service provider (ISP) to verify the suitability of this provision. However,

historical BE utilization levels on the Internet’s backbone are known to be approximately

10%. More importantly, these are just example allocations for use within the current

prototype.

Unallocated
40%

IntServ
20%

Control Channel
10%

Best Effort
15%

DiffServ
15%

Out of Profile
0%

Figure 1. Base Allocation per Service Level (From [9])

Essentially, BE has a network unto itself, a carbon copy of the underlying

topology with at least 15% of the bandwidth. Within the SAAM research group, one

solution proposed has been to let the legacy routing protocols and programs of today stay

resident and handle that part of the network management. This has some obvious

drawbacks. Primarily, it would relegate the SAAM solution to being an add-on module

and prevent it from being a total integrated solution. The ability to function as a module

on a device rather than completely “owning” the device necessitates at least one more

software interface layer and more complexity for the underlying OS to manage calls to

the hardware. Increased complexity usually translates to decreases in scalability, speed,

or efficiency. In the area of computing, this is always true when another interface layer is

inserted between an application and the underlying hardware.

SAAM needs to be a total solution so that it can completely control an underlying

network and thereby maximize the speed and efficiency, not to mention the overall

simplicity of that network’s architecture. SAAM’ is agent-based whereby specialized

agents can be deployed at run-time to devices needing to handle special situations.

Therefore, it is tempting to argue that SAAM can be deployed lacking certain
 3

compatibilities since, as the Internet and technologies change, new agents can simply be

developed, released, and deployed as needed. This may be advisable for those obscure

technologies and protocols that are still emerging or in decline. For something as

essential as handling BE traffic, however, functionality should be provided with the

initial release.

Figure 2. SAAM Hierarchy (From [12])

As seen in Figure 2, SAAM is organized into a hierarchy of controlling servers

over underlying SAAM regions of routers. The servers provide the points of centralized

management, while the routers provide the labor for routing packets. The servers are the

heavyweight decision makers that maintain large amounts of data and perform the

processing required to make computationally intensive decisions based on that data. The

routers, on the other hand, are lightweight performing simple packet forwarding and

reporting tasks. From the ground up, this division of labor has been designed with QoS

management in mind. The hierarchy of servers coordinates to meet QoS guarantees by

coordinating resource usage within and between the SAAM regions. The routers simply

install agents or routing table entries sent to them by the servers. While it seems a simple

 4

task at the router level, they are an integral part of a coordinated and complex decision

(made by a server above them) process that intelligently provides QoS.

Traditionally, BE traffic management has been performed in an opposite manner.

Routers are alone and must act autonomously on decisions as to where they should

forward packets. The process centers on nothing more than a single packet at a single

moment in time. That is, the decision doesn’t involve any variable or historic data other

then a single entry in a lookup table. The router builds this table from either a human

administrator or from a peer router that is directly neighboring or intraregional. Still, the

routers remain distributed autonomous systems answering to no one except those with

access to the physical device. As such, these routers tend to behave in a greedy fashion

when it comes to routing BE traffic. Their routing decisions will be that which seems

best based on their own router-centric algorithm. This decision may not be the best

interest for the greater network or for the end users who are depending on a particular

data flow. Enter SAAM with its sophisticated management capabilities for a network

region and the Internet at large. Surely, there must be some way for SAAM to leverage

its centralized management to handle BE traffic in a better fashion than the organized

chaos of distributed routers in a network acting autonomously.

If SAAM did take on the task of recognizing and managing BE traffic flowing

within its regions, there would be limitless possibilities for the method of

accomplishment. While a router in today’s Internet must make routing decisions based

on late, sometimes inaccurate information, SAAM maintains comprehensive information

about the regions it manages that is only slightly time-late. Minus any NP-complete

problem, therefore, the server should be able to make better decisions than a distributed

router operating with incomplete information. SAAM could do something as simple and

unimaginative as using a shortest path (SP) algorithm to route its BE traffic, as is done by

most routers today. If nothing else, this method would have the advantage of making

routers more lightweight. However, as occurs in networks using this scheme, this can

cause undue congestion on interior, critical (defined in [17]) links, whose bandwidth may

be inadequate to support periods of high demand. It also fails to capitalize on most of the

information that is maintained by the server. Finally, it is a static solution not becoming

 5

of SAAM where information is kept up-to-date allowing dynamic measures, both

proactive and reactive.

The current Internet BE model is built on simply making a best effort to get

packets to their ultimate destination. As David Isenberg puts it in [7], “just deliver the

bits, stupid.” This issue is a small one that exists at that single point in time and space

when a nameless router somewhere in the Internet receives a faceless packet and decides

how to send it on its way. Perhaps SAAM could go further and tackle some of the

broader issues as well. SAAM tracks traffic network-wide, providing for refereeing

traffic condition and ensuring fairness in scheduling. Since it maintains global

information about network resources, SAAM should also be able to ensure better

utilization of those resources than a collection of routers running greedy algorithms with

local information. Finally, when a failure occurs, a SAAM router has an ally an Internet

router does not: the SAAM server. The SAAM region should be able to deal better with

issues of fault tolerance than a stand-alone router.

B. PROBLEM STATEMENT AND APPROACH
The development of SAAM is nearly complete. SAAM has the capabilities to

take control of a region of routers and handle QoS traffic by establishing servers and

deploying router agents. These features answer the challenge of SAAM’s original

charter. Still, even as Internet Protocol Version 4 (IPv4) has yet to be replaced (or even

slightly displaced) by IPv6, so also it is recognized that the need to handle BE traffic will

exist for the foreseeable future.

The overarching research question we address here is that, if it were to do so, how

should SAAM handle BE traffic? More specifically, how can SAAM handle BE traffic

while maintaining its guarantees to QoS flows and minimizing congestion of the BE

traffic? Further, since all nodes are potentially equal customers with equal rights

(excluding those who have purchased QoS guarantees), how can SAAM enforce some

degree of fairness in the event of insufficient resources for high volumes of BE traffic?

The approach to answering these questions begins with research. First, broad

research is conducted with a general survey of past and current methods for routing BE

traffic. Next, research focuses on those solutions that are being developed today for
 6

problems similar to SAAM’s: handling BE traffic over QoS networks. Finally, plausible

solutions are studied in detail for concepts applicable to a SAAM implementation.

Once promising concepts are identified and isolated, the next step is to build a

solution that will fit in conceptually and be able to integrate practically into the SAAM

project. This starts with conceptual mapping of concepts into design diagrams followed

by a parsing of that abstract representation into object schema. From there, it is simply a

matter of translating identified objects into actual software objects to run on the SAAM

test-bed. For most SAAM development, such translation is accomplished through the

Java programming language with which all of SAAM’s core components have been

developed.

Once the solution is built into SAAM, then simulation testing begins by building

test scenarios which will validate certain key portions of the BE traffic management

solution. These scenarios are constructed using the Extensible Markup Language

(XML). Easily modifiable XML files facilitate the iterative design process by allowing

concrete identification of goals through actual scenarios that present the problem

situation(s).

Finally, results of testing are analyzed to determine whether any further changes

are necessary to the solution. Once the iterative design process is complete, final results

are collected and analyzed for conclusions. Evaluating the project as a whole with the

new BE traffic solution, recommendations are made for areas of future research and

improvement.

C. THESIS SCOPE
The scope of this thesis will be a research survey of existing solutions for BE

traffic over QoS in NGI-type models and then development of a creative and superior

solution that builds on the unique capabilities provided by the SAAM architecture. This

new solution will then be implemented and tested in the existing SAAM prototype.

Specifically, this solution examines management of BE traffic beginning and

ending in the ISO OSI Network layer in routers within a SAAM region. This thesis does

not develop a solution for routing BE packets beyond the borders of the SAAM region,

 7

though consideration is given to making a follow-on solution to address this easy to

implement. In addition, this thesis does not develop an interface for handling BE traffic

on a SAAM router that originates within or is destined for the ISO OSI Application layer

outside of the SAAM software.

D. CONTRIBUTIONS OF THIS THESIS

1. Major Contributions
A solution for managing BE traffic has been developed and incorporated into the

DARPA and NASA sponsored SAAM project at Naval Postgraduate School. The

solution developed is presented as “a” BE solution for SAAM; no claims are made to the

effect of being “the” best solution possible. Several areas invite further research and/or

possible improvement.

2. Minor Contributions
The simulation environment for SAAM has been enhanced to facilitate the testing

conducted as part of this thesis. First, the flow generator developed in [11] has been

modified to allow packet count as a test parameter. Second, a simulation delay time has

been incorporated into the test code that causes data rate to accurately match link speed.

Finally, the server code has been modified to make the server better recognize network

failures during simulation.

E. THESIS ORGANIZATION
The remainder of the thesis is organized as follows:

• Chapter II provides the background to this thesis work. Underlying

concepts fundamental to traditional routing are discussed as well as more

recent work in the field.

• Chapter III details the thought process behind building the BE solution for

SAAM.

• Chapter IV describes the implementation details of incorporating the

developed solution into SAAM.

• Chapter V presents the testing and results obtained in evaluating the

solution.

 8

• Chapter VI contains the conclusions and recommendations based on the

overall thesis work.

 9

THIS PAGE INTENTIONALLY LEFT BLANK

 10

II. BACKGROUND

A. BEST EFFORT VS. QUALITY-OF-SERVICE TRAFFIC
In today’s Internet, traffic is largely of a datagram based form known as best

effort [13]. As the Internet evolved from a small network of government and educational

hosts into the sprawling internetwork of hosts it is today, the single guiding design

principle has been connectivity. New hosts, routers, and domains were continually added

in an ad hoc fashion with the only requirement being to maintain connectivity. The rest

of the Internet needed a physical and logical connection to these new identities and vice

versa. There was no widespread concern for bandwidth, security, QoS, or extensibility of

underlying protocols.

Generally, guidelines and technology decisions for the Internet’s development

were sanctioned and published by non-profit, non-authoritative organizations such as the

Internet Engineering Task Force (IETF). Submission to these guidelines was largely

voluntary. The one de facto paradigm that emerged was best effort, the only expectation

that a user can have of the Internet as a whole. Sites on the Internet are connected and

intermediate routers will make a best effort to get each packet to its destination. In other

words, connectivity and minimum cooperation in routing are the only things that can be

counted upon in today’s Internet.

For simple data traffic, where the only concern is having packets traverse from

point A to point B eventually, this best effort model has proven adequate. However, there

are many other forms of traffic that are rapidly growing in volume for which a best effort

is not sufficient. These forms of traffic require guarantees of a requisite quality of

service, whether minimum bandwidth, maximum delay or loss rate, or a maximum delay

variation. A partial list of these forms of traffic includes voice, video, and real-time data.

Together these forms are called quality-of-service (QoS) traffic.

When the only promise a network can make is a best effort, QoS traffic

encounters several classic performance problems. A BE network cannot guarantee

bandwidth and so high volume traffic applications may find themselves bottlenecked. A

 11

BE network will only take the packet from point A to point B with no guarantee of trip

time. Obviously, for traffic that is time sensitive, this is unsatisfactory. In a BE network,

all packets are treated equally so that, at a congested point in the network, packets will be

arbitrarily dropped. For most BE applications running over TCP, these dropped packets

will be detected and resent with little or no degradation of performance in the end user

application. For some QoS applications, however, exceeding a threshold loss rate (as low

as zero in some cases) can degrade performance significantly.

If no expenses are spared, bandwidth and delay requirements can always be met

through providing additional network resources. However, this does not solve the

problem of delay jitter. For a radio signal in the air, continuous information transmitted

at discrete intervals will be received with the same intervals between them. This is

important for tightly synchronized information streams among others. Unfortunately, BE

traffic over the Internet can be much more erratic than a radio signal and exhibit jitter

(also referred to as delay variation) where there may be significantly different delay

intervals between successive packets in a data stream from source to destination.

B. BEST EFFORT ROUTING IN TODAY’S INTERNET
In today’s Internet, information is broken up into and then transmitted as packets.

Appended to these packets are headers, which contain, among other things, source and

destination addresses. These packets are then routed to their destinations by routers.

Routers perform the task (for BE traffic) of examining a packet’s header and then sending

it to the next hop in the network based on an entry in the router’s routing table.

For all the research conducted and sophistication introduced into this simple

model of table lookup, it remains a question of how to populate these routing tables with

more intelligent, or optimal, information than a human being’s manually configured best

guess. Many routers continue the dumb task of examining and forwarding packets while

presumably some intelligence, human or machine, is populating these tables to make all

the routing decisions happened with the greater good (global optimization) in mind.

Some routers are more intelligent, incorporating a routing protocol that enables them to

modify their routing tables based on information received from their peers.

 12

The problem of routing can be framed a number of ways. On a static basis, there

are underlying graph theory problems. A network is expressed as a graph with nodes and

links between nodes. Well-known algorithms can be applied to the graph expression to

compute solutions to sub-problems such as shortest path, maximum flow, or minimum

spanning tree. The routing problem can also be viewed as one of artificial intelligence

where each router must autonomously gather information and make inferences,

ultimately building a routing table from scratch. Finally, there is the dynamic aspect of

traffic engineering. Traffic engineering generally refers to optimization of changing

levels of traffic over routes that are themselves dynamic. For networks, traffic

engineering is concerned with the performance optimization of operational networks [1].

To date, no single routing solution has transcended the entire Internet. As a

whole, a static solution is difficult to develop because the Internet’s topology is ever

changing. Similarly, a dynamic solution would require a large amount of computing

power to manage the vast number of nodes and links along with a global mechanism for

implementing the solution. In theory, either of these solutions is possible (e.g., use of an

oracle with infinite computing resources). However, at present, real systems do not have

the resources or enforcement mechanisms to do so. No single solution is required as the

Internet has naturally grown into a form amenable to a divide-and-conquer approach: that

of multiple interconnected domains, or AS’s. Within one of these AS’s, an intradomain

solution is applied that can be uniformly implemented within the domain. Since the

entire AS is often known and administered as a whole, very specialized solutions can be

developed without assumptions being made about the physical hardware or level of

cooperation among the nodes. Between AS’s, however, a more robust, interdomain

solution has to be applied whereby border routers communicate to share simple

reachability information, either informally or through service level agreements (SLA’s).

1. Intradomain Routing

a. Static Configuration
The oldest and least imaginative solution for BE routing within a domain

is static configuration, where a router’s table entries are manually set and do not change

automatically. This requires complete knowledge of the network and the labor intensive

 13

task of logging into each router and through a series of system commands, setting its

table to route packets as desired. There is no room for error as a single incorrect digit in a

single routing table can logically disconnect the entire network. Further, the network

cannot be reconfigured (adding or changing position of nodes and links) without

repeating the entire static configuration.

b. Distance Vector Protocols
Of the automated protocols, the first major classification is known as

“distance vector.” With these simple protocols, a router updates a vector data structure

for each of its neighbors, which contains entries for destination address versus a single

metric, usually hop count. Routers communicate with their immediate neighbors and

share their distance vectors through a relationship of implicit trust. Each router updates

its distance vectors and then through some comparison of metrics (e.g., which neighbor

has shortest advertised hop count to a destination), updates its routing table entries for

each destination. As these information broadcasts are periodic, distance vector protocols

allow for dynamic conditions with no need of manual reconfiguration.

Of the distance vector protocols, Routing Information Protocol (RIP) has

enjoyed preeminence during the early growth of the Internet. RIP continues to be widely

implemented today despite new proprietary technologies from Cisco and other companies

that are superior in some technical aspects. RIP uses a simple hop count metric for route

computation and in some implementations, specialized techniques known as split horizon

and poison reverse to eliminate loops and hasten convergence after topology changes.

RIP’s major drawbacks are its hop count limit of 16 and simplistic path weighting (1 hop

= 1 distance unit). This has spurred development of more sophisticated distance vector

protocols that address these shortcomings. Still, if its inclusion into the Internet Protocol

Version 6 (IPv6) standards development process is any indication, RIP will be around for

a long time yet.

c. Link State Protocols
The other major classifications of automatic routing protocols are the link

state protocols. These are more complicated than the distance vectors in a number of

ways. First, rather than just obtaining and trusting information from its immediate

 14

neighbors, a router will obtain information from every other router in the network.

Second, rather than selecting routes based on a simple metric comparison, a router will

build a graphical representation of the network from the information it receives and then

use shortest path algorithms to determine the next hop for each destination. For this

reason, link state algorithms are sometimes referred to as shortest-path first algorithms

[3]. Overall, link state algorithms are more computationally intensive and require more

information sharing than distance vector protocols. Indeed, link state information has to

be flooded onto a network to ensure every single router receives every other router’s link

state information. Usually, this involves many redundant message transmissions. The

number of hosts and acceptable bandwidth overhead are usually considered when tuning

the link state flooding frequency.

The premier link state protocol is the Open Shortest Path First (OSPF)

Interior Gateway Protocol, developed by the IETF to replace RIP. OSPF was designed

with scalability and rapid convergence in mind [3]. Rather than constantly flooding

redundant information, OSPF only advertises on topology changes and at that, only sends

changed information. Apart from this, short “I’m alive” messages are exchanged

infrequently to verify established connections. OSPF is more sophisticated than RIP in

that its path metric can be set to something besides hop count. The most popular choice

is a number inversely proportional to bandwidth so that small links will be preferentially

avoided due to their large weighting. Finally, OSPF introduces a technique known as

traffic splitting where traffic is divided along multiple equivalent (i.e., equal metric)

paths.

2. Interdomain Routing
Intradomain routing solutions handle traffic that is sent and received within a

single AS. However, in many networks, particularly those belonging to commercial

ISP’s, such traffic is not the prevalent form. Most packets are part of network sessions

with another host somewhere else in the greater Internet, not in this AS. These packets

must first seek out one of their AS’s border routers, also known as border gateways.

From there, these packets typically travel through one or more other AS’s to the Internet

backbone and then through another one or more AS’s before reaching its destination. As

 15

the Internet is a much more loosely organized collection of hosts, a robust protocol is

needed that does not require the trust or cooperation that RIP or OSPF does.

The two most prevalent protocols for interdomain routing are the Exterior

Gateway Protocol (EGP) and the Border Gateway Protocol (BGP). The protocols are

similar in that they operate through neighboring AS border routers sharing reachability

information. Essentially, when a border router receives an outbound packet from its AS,

it needs to determine by which neighboring border router that destination is reachable.

EGP was the precursor to BGP and is rapidly being phased out due to scalability issues.

Specifically, EGP assumes the Internet is still arranged (it once was) in a tree-like

topology. EGP fails in those regions of the Internet that are now mesh-like. BGP, on the

other hand, allows all the Internet’s AS’s to be connected arbitrarily. BGP only presumes

router memory space as the amount of reachability information can be overwhelming

(64MB, for example, is no longer sufficient without some form of route aggregation).

Reachability information consists of enumerated long lists of sequential domains

that are next hops to each other in the Internet. A BGP router will receive such an AS

sequence, append its own AS to that sequence, and then advertise this new information to

neighbors. Loops are avoided by checking new AS sequence lists to ensure a BGP’s own

AS number is not already included. This does not prevent selecting a long route when

shorter routes exist, only loops. Still, the protocol’s current version has controls such as

Local Preference and Multiexit Discriminator, which allow for the prioritization of route

information. Finally, as the Internet continues its exponential growth and exhausts a

router’s limited memory, BGP allows route aggregation where it can generalize

downstream information. A consequence of this might be lower preference from those

border routers implementing the most-specific-first method of route selection.

C. THE STATE OF THE ART
The Internet is still a BE, IPv4 internetwork. Until organizations upgrade their

networks to use IPv6 or an overall QoS-based architecture emerges, neither of which are

guaranteed to happen, research and development will continue work on designing new

solutions and improving existing solutions for BE traffic in the Internet’s current

 16

architecture. Even the Internet2 consortium acknowledges that their solution will not

replace the Internet [6].

1. Routing Solutions
While RIP, OSPF, and other protocols have proved sufficient for routing BE

packets, research continues in search of greater efficiencies, optimization, and other

criteria such as congestion avoidance and resolution. Ultimately, such research focuses

on building a better routing algorithm, finding better inputs for existing algorithms, or

making better use of algorithm outputs.

Shortest path protocols such as OSPF typically use a well-known routing

algorithm. Among these, Dijkstra’s algorithm is the most popular and more importantly,

unexceeded in terms of computational efficiency (scales on order of nlogn). The

algorithm visits each node in turn and builds a shortest-path tree to all other nodes by

sequentially linking the nearest node, updating the computed distance of the unlinked

nodes, and repeating continually until the tree is built. In its simplest form, these

distances are single, static values that describe something about the links between nodes.

In this form, the problem is tractable. However, if the distance values change from scalar

to vector or if a single path constraint is applied, the problem becomes NP-hard, or

intractable. Obtaining near-optimal solutions in these instances requires the application

of heuristics, or settling for some best solution obtained after a computational time limit.

Therefore, mathematical research focuses on how to choose these heuristics.

Operationally, research is done on how best to tune a network by adjusting path weights.

For those solutions that allow path weights to change dynamically with traffic conditions,

another variable is considered: time constant. Networks that respond too quickly or with

too much of an adjustment for a change in conditions can experience instability.

Instability describes the situation where a network undergoes large swings in traffic

conditions while attempting to correct itself; it never converges on a new solution. Part

of this is the classical control theory problem of setting the time constant too small to

allow the last error correction to effect feedback. It is also compounded in networks

where many routers may be acting autonomously to correct the same problem. Without

coordination amongst themselves, they may be continually shifting traffic from

 17

previously congested areas and creating new areas of congestion so that their algorithms

will be constantly hunting and sabotaging each other’s solutions.

Some of the other routing algorithms developed are sequential selection of

different metrics over single-metric algorithms such as Dijkstra’s. For example, the

shortest widest path (SWP) algorithm is actually Dijkstra’s algorithm with inverse

bandwidth as the metric. “Shortest” refers to the tie-breaking aspect of selection among

equally wide paths. Widest shortest path (WSP) is the reverse. Another method applied

in these instances is to develop a new metric that is a function of multiple inputs. For

example, a metric may be developed that is a function of a link’s bandwidth and delay.

Once these two are combined into a single value, the problem becomes tractable with an

optimal solution obtainable through Dijkstra’s or other algorithm.

Besides modifying the algorithms or their inputs, it is also possible to change how

outputs are used. Shortest-path routing has usually involved selecting the single shortest

path to a destination and then routing all of that destination’s traffic onto that one path.

One of the first alternatives to be proposed was a method called equal cost multipath

(ECMP) wherein if the routing algorithm found multiple shortest routes of equal cost,

then traffic would be evenly split along those paths. One of the main drawbacks of this

method is the potential for fragmenting a TCP session where supposedly equal paths

actually have delay differentials large enough to cause packets to arrive out of order. One

suggestion [2] to correct this is to split traffic based on a hashed IP address to ensure

same-session traffic follows the same route. Besides ECMP, other solutions involve

splitting traffic to a destination along the next shortest route(s).

2. Management Solutions
Another area of research is the management aspect of BE traffic. Currently, there

is no management in the Internet without specialized devices. The Internet’s de facto

hardware consists of IP routers. The lowest common denominator IP router has no

management capability. It simply examines IP headers of packets, performs a table look-

up, and forwards those packets as fast as its switch fabric or line speed will allow.

For this reason, TCP/IP ascended to be the combined standard relied upon by

hosts communicating over the Internet. TCP performs the end-to-end management of a
 18

session that does not exist in the underlying IP protocol. Whereas without TCP, a user

can have no expectations about packet loss rate or timing, TCP will step in front of IP and

present to the user or application the full transmission of packets in the proper order.

TCP simply tracks a session on a packet-by-packet basis and performs retransmission or

reordering when needed. This is management on the user end.

TCP also performs an important form of management for the Internet at large

known as TCP rate control. Even if a group of IP routers unintelligently sends all of their

traffic over the same path and fails to respond to resulting congestion, TCP will cause the

end-to-end sessions comprising that traffic to throttle back on the send rates. While at

first seeming a luxury, this single mechanism is the only thing protecting the Internet

from congestion collapse [4]. Congestion collapse describes the situation where a

network’s bandwidth is almost exclusively occupied by packets that are discarded

because of congestion before they reach their destination.

This form of control continues to work today because the majority of Internet

applications run on TCP. Contending TCP flows cooperate and reduce their transmission

rates while non-TCP flows continue unimpeded and take advantage of the TCP

applications’ selflessness. Today, the majority of applications run on TCP. However, the

number of audio/video applications is growing and it is feared that this will cause the

percentage of non-TCP traffic to grow [14].

The questionable reliance on cooperation continues to drive the end-to-end versus

router-based management debate. End-to-end management is simpler. By refining the

TCP protocol and hoping that everyone will use it, congestion can be managed by the

hosts at each end of the session. The IETF has even mandated that non-TCP applications

be TCP-friendly. That is, those applications that do not use TCP should not offer more

traffic load than a similar TCP application would under like conditions. The issue here is

fairness. Unfortunately, there is no current way to enforce this mandate. IP routers treat

traffic as aggregate and do not currently incur the processing or overhead required to

determine if anyone is behaving in an unfriendly manner. Therefore, malicious users can

deliver barrages of non-TCP packets with impunity. Even with TCP, a malicious user

 19

can launch redundant sessions or parallel sessions to grab more than his/her fair share

despite rate control.

Router control, on the other hand, could potentially enforce some degree of

fairness. At the very least, it would require a switch from aggregate scheduling to per-

flow queuing. Even then, a flow would have to be reclassified to an IP address-to-

address level rather than a TCP port-to-port level to overcome the problem mentioned

above. For a router take on management functions, it would have to track state. Most IP

routers are treated as being stateless in that they do not keep track of past state.

Conversely, stateful router tracks some state over time and requires memory to do this.

This state may be data about a specific data flow, class of flows, or type of traffic.

Currently, only small groups of routers take on management functions and then

only for QoS traffic with solutions varying among proprietors. For BE traffic in the

greater Internet, there is no router-based management solution. TCP continues to be

relied on for all management aspects of the BE flows while the underlying IP routers

perform the menial task of packet forwarding.

3. Traffic Engineering
For most of the Internet’s lifetime, technicians have tackled problems at the

physical level and described those problems in very concrete terms. If there was any

engineering involved, it was electrical engineering. As the Internet grew and the amount

of data exchange increased, problems were alleviated by a “bigger, better, faster, more”

strategy through provision of equipment. The physical layer was the focus and the actual

data traffic was treated like weather: something that must be dealt with but cannot be

controlled in and of itself.

Recently, a new construct and vernacular have emerged to frame the problem

differently. It is called traffic engineering. Network traffic engineering is a more

strategic approach than tactical hardware upgrades. The IETF has demonstrated their

commitment to this approach by establishing the Traffic Engineering Working Group

(TEWG) with its Internet Traffic Engineering Charter.

 20

The TEWG has continued to develop and refine the concept through publication

of various Requests for Comment (RFC’s) and Internet Drafts. In May of 2001, the

TEWG released an Internet Draft entitled “A Framework for Internet Traffic

Engineering” in an attempt to solidify some of the concepts and terminology for the

subject.

Internet traffic engineering is defined as that aspect of Internet network
engineering dealing with the issue of performance optimization of
operational IP networks. Traffic Engineering encompasses the application
of technology and scientific principles to the measurement,
characterization, modeling, and control of Internet traffic [19].

Numerous research efforts have focused on traffic engineering and how to incorporate it

into existing protocols through extensions or existing routers through management-

information-base (MIB) design.

 Multiprotocol label switching (MPLS) has emerged as one of the foremost

technologies through which traffic engineering can be realized. This is because traffic

engineering makes abstractions of both data and hardware. Instead of discussing packets,

links, and nodes, traffic engineering discusses data as “flows” and “trunks” and physical

hardware as “paths” and “routes.” MPLS readily lends itself to this schema through its

simple mechanism of packet labeling and label-switched paths (LSP’s). In this way,

packets can be labeled according to their administrative handle and links can be colored

according to their administrative policy. For BE traffic, emphasis has been placed on

intelligent labeling and relabeling.

Traffic engineering is needed in the Internet mainly because current
interior gateway protocols always use the shortest paths to forward traffic.
Using shortest paths conserves network resources, but may also cause the
following problems:

The shortest paths from different sources overlap at some links, causing
congestion on those links.

The traffic from a source to a destination exceeds the capacity of the
shortest path, while a longer path between these two routers is
underutilized [16].

 21

These authors and many others have proposed methods using MPLS to overcome these

problems.

 Traffic engineering has led to the introduction of another concept: network

engineering. In July of 2001, the TEWG published an Internet Draft entitled “A

Framework for Internet Network Engineering.” Like traffic engineering, network

engineering addresses the problem of handling Internet traffic at a macroscopic level.

Whereas the focus on traffic engineering was a move away from physical solutions and

towards programmed solutions, network engineering is a move back towards the physical

in that it examines network provisioning. According to the TEWG, they go hand in hand.

In their original treatise on network engineering, the TEWG puts their difference simply:

traffic engineering is putting traffic where the capacity is while network engineering is

putting capacity where the traffic needs it [19].

 22

III. BUILDING A BETTER BEST EFFORT SOLUTION

A. CURRENT STATE OF SAAM PROTOTYPE
Prior to the work reported in this thesis, SAAM had very little BE capability. In

fact, BE traffic was treated as just another QoS level within the SAAM QoS architecture.

Contrary to what an end user might expect, SAAM required that all BE traffic be part of a

flow and that flow be preceded by a flow request to reserve resources. Once the request

was accepted, then the BE traffic would flow through the SAAM region in a manner

similar to other QoS flows with an assigned flow ID and path ID. At outbound

interfaces, it would be discriminated by the type of service (ToS) bits in its header. This

would channel the BE packets through a lower priority outbound queue (IntServ and

DiffServ traffic take precedence).

With the flow request model, a number of issues arise. The first is that it is a step

back from what is already offered by the Internet for BE traffic. From a user standpoint,

the Internet is “instant on” for BE traffic. Once configured with a proper IP address and

connected to the Internet, nothing more is required to send and receive traffic. With the

flow request model in SAAM, however, the user is burdened with the added requirement

of a flow request and the forethought necessary for determining the parameters of that

request.

Second, there is the issue of waste. For a revenue-generating QoS flow, there is

no waste. The market forces result in a price-driven model in which every request and

hence, resource reservation, is paid for at a price agreeable to the service provider and

user. Unused reservations continue to generate revenue from whoever reserved them.

Unreserved resources retain the potential to be sold in a flow request. Best effort, on the

other hand, which is presumably a free or flat fee service, would waste resources within

its granted provision. All the while, it could be sharing its unused bandwidth with

another BE flow on the same link. Indeed, from an economic standpoint, the entire

provision is a waste if there is no cost for BE flows.

 23

Finally, SAAM’s requirement of flow requests for all traffic makes it

incompatible with the rest of the Internet. In the Internet, an IP router will examine an

incoming packet’s destination IP address and then make a best effort to forward it,

dropping the packet only if the destination is invalid or unreachable. A SAAM router

will not recognize, let alone route a packet, unless it has been appropriately labeled

according to a previously approved flow request.

Fairness and fault tolerance are two issues that SAAM addresses for QoS traffic.

For both IntServ and DiffServ, fairness is a matter of service contract. Better QoS

parameters are negotiated at a price. SAAM provides reliable fault tolerance for IntServ

flows through advanced rerouting techniques detailed in [15]. For BE however, there is

no fairness or fault tolerance. Equal paying customers may encounter substantially

different BE performance in a SAAM region and SAAM will make no effort to correct

the disparity. As for fault tolerance, a single failure on a BE flow’s path will permanently

disrupt that flow.

B. REQUIREMENTS FOR A BETTER SOLUTION

1. Security
In any effort to make SAAM more interoperable with the Internet’s BE traffic,

security must not be compromised. Specifically, if router behavior is modified such that

non-SAAM packets are recognized and examined, consideration should be given to the

accompanying security problems that may occur such as denial-of-service or any attack

that would use unsolicited BE traffic as a vehicle.

2. Light-Weight Routers
“SAAM consists of light-weight routers and a small set of heavy-weight servers”

[12]. This is one of SAAM’s foundational concepts and is sometimes referred to as the

“smart server, dumb router” model. Any new BE solution must not place significant

computational or memory burden on the router and destroy this model. This eliminates

solutions such as making an OSPF SAAM agent. Router-based algorithms, such as those

required by OSPF, are unacceptable. Therefore, computation and bookkeeping should be

kept at the server whenever possible and any new router functionality should be fairly

simplistic.

 24

3. Interoperability
Whereas SAAM’s current BE flow request system makes it incompatible with the

current Internet, the new solution should promote interoperability. Specifically, SAAM

routers should recognize and handle generic BE traffic that does not have any QoS

labeling. The ultimate achievement of compatibility would be a solution that allows a

SAAM region to function as a transit AS, allowing transit traffic based on SLA’s with

neighboring AS’s.

4. Fault Tolerance
The new solution should afford some degree of fault tolerance for BE traffic. The

SAAM server maintains a complete picture of its region and there is no good reason why

this knowledge should not be exploited for enhanced fault tolerance. At the very least,

the server’s knowledge could be used to detour a traffic flow around a known failure.

5. Fairness
Fairness is one aspect of BE traffic management that the Internet lacks. SAAM is

able to provide this with its servers acting as arbiters among competing interests. The

new BE solution should tackle the fairness problem along these lines. Specifically, an

attempt should be made to maintain fairness both among flows and among users. In this

context, fairness is defined as ensuring adverse effects are borne as equally as possible

during periods of network congestion.

6. Adaptive Response Mechanisms
Network congestion can sometimes be avoided altogether if the network adapts to

changing conditions by taking preventive or corrective action. Since the SAAM server

maintains an accurate picture of its region and is continuously operating, a new solution

should incorporate an adaptive response mechanism in order to prevent congestion or

alleviate congestion that arises.

7. Stability
Any time a dynamic solution is considered, stability becomes an issue. Therefore,

in designing any type of new intelligence for BE traffic in SAAM that is adaptive and/or

 25

dynamic, stability must be guaranteed. Specifically, time constants for new processes

should be considered in order to ensure convergence and prevent over-corrections.

8. Intelligent Provisioning
SAAM has complete knowledge of the characteristics of every link and node in

the network. Therefore, an attempt should be made to develop a better solution for BE

provisioning than just assigning shortest-hop paths. One area in particular that should be

examined is how to make use of unused resources during periods of heavy demand.

9. Scalability
Any new solution should not be based on assumption of a SAAM region having

an arbitrarily small number of nodes. Rather, it should allow for growth without internal

processes and data structures becoming unmanageable. Specifically, if a solution based

on underlying BE flows is considered, then a full interior mesh topology should be

avoided if possible.

10. Packet Recovery
For solutions involving edge router discovery, incoming packets should not be

needlessly dropped. Rather, an attempt should be made to requeue and retransmit later if

possible.

C. INSPIRATION
Significant research was conducted prior to translating these requirements into a

design. Many methods of managing BE traffic were surveyed. Those solutions that

involved managing BE traffic in a QoS network were examined closely in a search for

concepts that might be applied to the SAAM architecture for its BE solution. While

many general principles and engineering practices were gleaned as background from

multiple sources, the fundamental idea for SAAM’s design solution comes from one

source in particular.

In 2001, a group of researchers proposed a set of multipath adaptive traffic

engineering (MATE) algorithms designed for traffic engineering in MultiProtocol Label

Switching (MPLS) networks [2]. MPLS is similar to SAAM in that it is a path-based

routing scheme and can be used for QoS management through use of flow labels.

 26

The developers of MATE over MPLS point out that traffic engineering has been

attempted before through use of shortest-path algorithms, but such solutions suffer from

several limitations:

• Load sharing cannot be accomplished among paths of different costs.

• Traffic/policy constraints are not taken into account.

• Modifications of link metrics to readjust traffic mapping tend to have

network-wide effects causing undesirable and unanticipated traffic shifts.

• Traffic demands must be predictable and known a priori [2].

The MATE developers then propose their state-dependent traffic engineering mechanism

with features to include:

• distributed adaptive load balancing

• end-to-end control between ingress and egress nodes

• no new hardware or protocol requirement in intermediate nodes

• no knowledge of traffic demand required

• no assumption of scheduling or buffer management schemes at nodes

• optimization decision based on path congestion measure

• minimal packet reordering

• no clock synchronization between nodes [2]

Of all the methods for BE over QoS that have been studied, it is MATE over

MPLS that provides the foundation for the SAAM solution. Overall, the BE solution for

SAAM is designed to incorporate the routing that is common to RIP and OSPF and the

traffic engineering accomplished by MATE. The main difference between conventional

implementations of these methods and SAAM’s implementation is that SAAM

centralizes intelligence at the server. Whereas an OSPF router calculates routes on its

own, SAAM’s servers calculate the routes in a SAAM region. Whereas a MATE router

determines congestion with probe packets and makes load balancing decisions by itself, a

 27

SAAM server determines congestion through LSA’s and decides for the routers when to

do load balancing.

D. DESIGN
The design of the new BE traffic management solution capitalizes on the SAAM

architecture; that is, it relies on specialized deployed agents to perform specialized tasks.

Additionally, the server is given a new management module to coordinate the

deployment and operation of these agents. Finally, new messages are created to facilitate

the specialized communications necessary between the servers and agents.

Taken From Inbound Interface

In To Outbound
Interface

Out

Y
E

S

To Transport Interface

Out

FlowRoutingTable
Resident Agent

ARPCache
Resident Agent

SAAM Packet

NO

Dest. = Local IP?

Data
 Pac

ke
t

Table Updates and
Replacements From
Control Executive

From Transport Interface

Path Interface Next Hop Goodness
Next Hop MAC

Taken From Inbound Interface

In To Outbound
Interface

Out

Y
E

S

To Transport Interface

Out

FlowRoutingTable
Resident Agent

ARPCache
Resident Agent

SAAM Packet

NO

Dest. = Local IP?

Data
 Pac

ke
t

Table Updates and
Replacements From
Control Executive

From Transport Interface

Path Interface Next Hop Goodness
Next Hop MAC

FlowRoutingTable
ARPCache

FlowRoutingTable
ARPCache

Figure 3. Old Routing Method (modified from [12])

Previously, only two agents were involved in routing: FlowRoutingTable

and ARPCache. As seen in Figure 3, incoming packets are examined to determine

destination IPv6 address. If the destination is local (i.e., this router), the packet is sent to

the Transport layer. Otherwise, the RoutingAlgorithm relies on agents

FlowRoutingTable and ARPCache to determine the appropriate outbound interface

on which to forward the packet. First, the RoutingAlgorithm calls the

FlowRoutingTable to determine the next hop IPv6 address. Based on that address,

 28

another call is made, this time to the ARPCache, to determine which outbound interface

that address maps to. This solution does not handle BE traffic. As seen in Figure 3, the

call to the FlowRoutingTable requires that the packet have a flow label containing

path ID information, which can only be obtained through flow requests.

Taken From Inbound Interface

In To Outbound
Interface

Out

Y
E

S
To Transport Interface

Out

FlowRoutingTable
Resident Agent

ARPCache
Resident Agent

SAAM Packet

NO
Dest. = Local IP?

Data
 Pac

ke
t

Table Updates and
Replacements From
Control Executive

From Transport Interface

Best Effort?

NO

Y
ES

BestEffortTable
Resident Agent

Destination Map to PathTraffic Split

Path Interface Next Hop Goodness
Next Hop MAC

Taken From Inbound Interface

In To Outbound
Interface

Out

Y
E

S
To Transport Interface

Out

FlowRoutingTable
Resident Agent

ARPCache
Resident Agent

SAAM Packet

NO
Dest. = Local IP?

Data
 Pac

ke
t

Table Updates and
Replacements From
Control Executive

From Transport Interface

Best Effort?

NO

Y
ES

BestEffortTable
Resident Agent

Destination Map to PathTraffic Split

Path Interface Next Hop Goodness
Next Hop MAC

BestEffortTable

FlowRoutingTable
ARPCache

BestEffortTable

FlowRoutingTable
ARPCache

Figure 4. New Routing Method (modified from [12])

At the router level, a new agent is all that is needed to provide BE functionality.

Now, a simple check to see whether or not the packet is unlabeled BE is made before

calling the FlowRoutingTable. If the packet is unlabeled BE, then the

BestEffortTable will be called first to obtain the missing flow label (path ID) that

the FlowRoutingTable needs. This only needs to happen once. When a BE packet

receives its label through this process at an ingress to a SAAM region, the label is written

into its IPv6 header and used for the rest of its travel through the region. The routing that

SAAM uses is path-based rather than hop-by-hop. Essentially, the BE packet gets

mapped onto a preinstalled path through the region at the ingress point. That path will

terminate at an interface within the region or at one of the border routers. All

intermediate SAAM routers will recognize that path by means of a preinstalled entry in

their FlowRoutingTable.

 29

EDGE ROUTER EDGE NOTIFICATION

CONGESTION ADVISORY SERVER

BEST EFFORT TABLE

LINK STATE ADVERTISEMENTS

= EDGE ROUTER

= CORE ROUTER

?

?

Figure 5. Server / Edge Router Communication

The solution developed in this thesis requires constant communication between

the SAAM server and the deployed BestEffortTable agents. This happens through

the message exchange shown in Figure 5. LSA’s (a message previously developed in

[12]) are received from all SAAM routers, keeping the server apprised of network

conditions. EdgeNotification messages are received from edge routers to key the

server to BE topology changes. Finally, the server controls edge router BE handling

behavior through CongestionAdvisory messages.

All of these new components will now be explained more fully.

1. Best Effort Table Agent

The BestEffortTable agent was developed to be the sole additional agent

necessary at a router to handle BE traffic. At its core, the BestEffortTable agent is

a simple lookup table, similar to the FlowRoutingTable agent. However, the

BestEffortTable has the capability to track multiple entries for a single destination

and perform load-balancing among them when directed by the server.

 30
Figure 6. A Best Effort Traffic Routing Table

Router A [Demostation Port: 9004] [Emulation Port: 9003] [Currently displaying: Best Effort Pa

File Protocol Slack Routing Tallies Active Channels Open Ports Application Agents

_ D x

Dest IPv6 Address
99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.2
99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.2

Map to Path Traffic Split

The BestEffortTable works in concert with the FlowRoutingTable to

route BE traffic. As seen in Figure 6, the BestEffortTable by itself has insufficient

information to determine a packet’s next hop. RoutingAlgorithm will recognize BE

traffic at the ingress edge route by virtue of it having no flow label or path ID. At that

time, it will ask the BestEffortTable, if resident, how to handle the packet. The

BestEffortTable, however, will return a pathID based on the packet’s destination

IPv6 address. With a path ID, the RoutingAlgorithm will then be able to route the

packet like regular QoS traffic by referring to the FlowRoutingTable for an actual

next hop address and then its ARPCache for the outbound interface.

The previously unlabeled packet is now labeled in the manner for use by the

SAAM routers. The packet will travel through the region possibly using the same path

shared concurrently by QoS flows. It will be discriminated against in priority queues, but

this is a preexisting mechanism designed to meet QoS traffic bandwidth guarantees. It

only needs special handling at the single ingress edge router. This traffic would have

originated from either an application on the edge router or from outside the domain if the

edge router is also a border router. Either way, it follows a path to an egress edge router

in the SAAM region, which, again, may host a receiving application or be a border

gateway to outside the domain.

a. Destination Management

 31

The BestEffortTable manages traffic on a per-destination basis.

Whenever the BestEffortTable receives new BE routes from the server, it will

either recognize a new destination to manage that it hasn’t seen before or it will add those

routes to its data structure for that pre-existing destination. The BestEffortTable

has room for a full complement of spare routes for each destination. The current

implementation uses just two active routes to each destination, so a 4-route array is used

to hold the active and spare routes. At any given time, the BestEffortManager will

load balance between its two active routes. If sent a third route, that route will be added

to the table with a split of 0% for that destination. If a fourth route (which may be

identical to the third in some cases) is then sent, the BestEffortManager will

recognize this as the alternate path for a congestion bypass. Consequently, the first two

routes will be set to 0% split, while the previously sent third route is set to handle 100%

of the traffic as the new primary route. The first two routes are retained and remain in the

table. However, if the server sends more routes for this destination, the table wraps

around and these entries are written over.

b. Load Balancing

The BestEffortTable receives multiple entries to a destination in

order to perform load balancing among different parts of the network. It accomplishes

this through the dual behaviors of redirection and reversion. Initially,

BestEffortTable maps all traffic to a destination along a single primary path. This

path is usually shorter and/or wider than the alternate paths by virtue of the performance-

based path-finding algorithm the Best Effort Manager uses for primary paths. Therefore,

it is used preferentially for performance reasons. Once the BestEffortTable is

notified by the server of congestion towards a destination, it begins redirection of traffic.

Redirection involves iteratively shifting traffic to alternate paths.

99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.2

Router A

Path 92

Path 82

20% 80%

BE IN

BE OUT

Figure 7. Multipath Load Balancing

When the server notifies the BestEffortTable that the congestion has

cleared, the BestEffortTable will initially hold the current split. Then, it will begin

reversion of traffic. This involves iteratively shifting traffic back to the primary path,

which is preferential for performance reasons.

 32

»Router A [Demo-EmulationPort: 90041 [SaamPort: 90031 [Currently displaying: Best Effort Table
File Protocol Stack Routing Tables Active Channels Open Ports Application Agents

Dest IPv6 Address Map to Path Traffic Split
99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.2 i82 80

Redirection and reversion happen with different frequencies. Principally,

redirection is rapid in order to avoid a sustained congestion condition. Reversion is less

urgent as the only concern is gradual optimization during conditions that are already

acceptable and so happens less frequently. Choice of redirection and reversion intervals

is discussed later in this section.

The BestEffortTable has an additional method of load balancing

that is not a programmed behavior as redirection and reversion are, but rather a

phenomenon resulting from the manner in which it installs new table entries. Whenever

the BestEffortTable receives a new complement of routes toward a destination, it

resets the split for that destination to 100/0. This allows the server to do something that

will be termed here as switchback. By resending the same entries that the

BestEffortTable already has, the server can cause the BestEffortTable to

instantly shift all of its traffic back to the primary path. Otherwise, this would only

happen through numerous reversion intervals.

c. Fault Tolerance
While primarily used for load balancing, the redundant paths are also used

for fault tolerance. When the server notifies the BestEffortTable of a failure in a

path to a destination, the BestEffortTable will immediately switch all traffic onto

the surviving paths.

2. Best Effort Manager

The BestEffortManager is a new component in the SAAM server which

handles the management of BE traffic from the server end. The BestEffortManager

relies on three main programmed hooks in the server code to function during operations.

The first is a call whenever the server discovers a new edge router.

BestEffortManager updates its bookkeeping to track the new router and any

attendant BE traffic. Next is a call whenever the server is receiving an updated link state

advertisement from a SAAM router. BestEffortManager will examine the reported

loss rate for BE traffic and respond accordingly. Lastly, whenever a network failure

occurs, BestEffortManager is notified immediately for fault tolerance purposes.

 33

BestEffortManager always functions in one of two modes: reactive

monitoring or proactive monitoring. Within these modes, its operations consist of

maintaining a BE topology, deploying paths for BE traffic, sending congestion

advisories, and tracking statistics.

a. Best Effort Topology Maintenance
One key to the overall BE traffic management solution is to be able to

distinguish between edge routers and core routers. It would be simpler to consider every

SAAM router as a potential sender and receiver of BE traffic. This necessitates

deploying enough paths to create a full interior mesh topology because traffic can

originate and end anywhere. This approach is not only wasteful; it hurts the overall

scalability of SAAM. First, not all of these paths are necessary since many, if not most of

the routers, will not be origins or destinations of BE traffic. Second, a mesh involves

deploying 2 * N * (N – 1) paths for a region of N routers which is on the order of N2

growth as new routers are added. N2 growth can portend that a solution will not scale

well; if N increases by an order of magnitude, then the solution resources will increase by

two orders of magnitude.

Therefore, the BestEffortManager carefully tracks and manages just

a subset of the overall SAAM topology, which is the BE topology. It builds this topology

from scratch through a process of edge router discovery. Every router is a core router

initially The SAAM server is notified if a router previously regarded as a core router

needs to be promoted to edge router to handle BE traffic. The SAAM server is also

notified when a regional interface address appears in the IPv6 destination field of BE

packets. In both cases, BestEffortManager updates a BE topology comprised of

these routers and interfaces. The BE topology is not just a subset, but also an abstraction

of the complete topology maintained by the server. Whereas the server’s topology is

comprised of nodes and links between nodes, the BE topology is comprised of nodes and

paths between nodes. These paths are logical representations of nodes and links not

specifically included in the topology.

In the strictest sense, this BE topology still scales as N2, just as a mesh

topology would. However, N now maps to just edges rather than all nodes. In the

 34

Internet, edges are comprised of routers serving as an ISP’s point of presence or a border

gateway. Generally, these routers comprise less than half of the router population.

Therefore, a mesh consisting only of these routers significantly reduces the size of the

topology to be managed, which enhances scalability.

The topology is built by connecting all BE origins to all BE destinations

through two paths. Origins are edge routers. Destinations are interfaces addressed in BE

packets. From this point, the topology is kept up to date in event of new nodes or

interfaces, new path deployment, or path failures.

b. Reactive Monitoring

Reactive monitoring is the default mode of the BestEffortManager.

During reactive monitoring, the BestEffortManager monitors link state

advertisements for BE traffic loss rate information and then reacts when problems are

detected. Specifically, reactive monitoring is designed to combat local congestion that

can be resolved by a single BestEffortTable agent out in the SAAM region.

When congestion is detected between two BE nodes,

BestEffortManager will notify the BestEffortTable agent at the source router

to begin load balancing in an attempt to resolve the congestion locally. If it becomes

apparent that load balancing will not resolve the congestion, then the

BestEffortManager will initiate a procedure called congestion bypass. This entails

the server deploying new paths to that BestEffortTable, which bypass the

congested region of the network. The old paths expire for 30 minutes and will not be

reused for BE traffic during that time. If no available paths remain for congestion

bypass, then the BestEffortManager declares the network to be globally congested

and initiates global congestion resolution procedures.

c. Proactive Monitoring

 35

BestEffortManager shifts to proactive monitoring during periods of

global congestion. Proactive monitoring involves continuous statistics tracking and

deliberate actions to effect fairness during times of resource contention.

BestEffortManager uses statistics to determine which BE traffic is being

inordinately penalized and which BE traffic is receiving more than its fair share.

After this, BestEffortManager attempts to enforce fairness through a

“rob from the rich, give to the poor” Robin Hood approach. The “rich” are those

aggregate BE traffic flows that experience a packet loss rate less than one standard

deviation less than the mean packet loss rate. Similarly, the “poor” are those

experiencing a packet loss rate greater than one standard deviation above the mean packet

loss rate.

In robbing from the rich, BestEffortManager will reclaim that flow’s

least widest path, freeing those resources to alleviate congestion in more heavily

congested flows. In giving to the poor, BestEffortManager first goes through the

graveyard of expired BE paths (from congestion bypass procedures) and reclaims those

paths which are now congestion free prior to their 30 minute quarantine. Then,

BestEffortManager determines which of two methods might increase a flow’s

available bandwidth: switching back to the primary path or deployment of a reclaimed

path. If it is switching back to the primary path, BestEffortManager instructs that

BestEffortTable agent to initiate a switchback. If it is deployment of a reclaimed

path, then BestEffortManager will deploy reclaimed paths to increase bandwidth

and alleviate congestion. In either case, if an action is taken, BestEffortManager

will wait one local resolution timeout to allow the problem to resolve before taking

further action. If no action is possible or if all loss rates fall within a single standard

deviation of the mean loss rate, then BestEffortManager continues with proactive

monitoring until either global congestion disappears or a flow qualifies as rich or poor.

3. Routing Algorithms
Several new routing algorithms have been developed which are designed

specifically with to include BE management capabilities. Specifically, these algorithms

encompass load balancing, congestion bypass, redundancy, fault tolerance, congestion

avoidance, and performance.

Each of these routing algorithms is based on linear search and path comparison of

the server’s path database and applying selective filters. The first-shortest-path (FSP)

 36

algorithm developed earlier in the SAAM project ([5]) did not meet the needs of the BE

management scheme discussed here.

a. Shortest Widest Path (SWP)
SWP selects the shortest of the widest paths between two nodes. It does

this by first determining the widest paths in terms of bandwidth. If there are multiple

widest paths, then the shortest among those is chosen.

SWP is the algorithm used to deploy initial primary paths for BE traffic

flows. Barring any congestion and assuming sufficient network provision, this is the

algorithm of choice since bandwidth is the number one criteria. Bandwidth is more

valued for BE traffic due simply to the prime goal of congestion avoidance. Delay is not

a concern for BE traffic since if it was, that traffic should have been put into a QoS flow.

The only concern for BE traffic is that it gets to its destination with minimum congestion

along the way. Congestion is best avoided by selecting wide paths from the beginning.

b. Shortest Widest Most Disjoint Path (SWMDP)
SWMDP selects the shortest of the widest of the paths most disjoint

compared to some reference path between two nodes. It does this by first finding the

paths that have the least nodes and links in common with some reference path between

two nodes. Ideally, a path will be found with nothing in common with the reference path

except the first and last node. If multiple paths are found equally most disjoint, then the

widest path is selected. For equal widths, the shortest path is selected.

SWMDP is the algorithm used to deploy all alternate paths (both initial

provision and congestion bypass). Regardless of the algorithm used to deploy the

primary path for a given node pair, SWMDP will be used to select the alternate. The

reason for this is that alternate paths are valued above all else for their use in load

balancing and fault tolerance. Load balancing is more effective between two paths with

no common node or link between source and destination. Indeed, if the two paths did

share a link, and congestion were to occur on that link, then load balancing between the

two paths would do nothing to combat that congestion. Secondly, less fault tolerance is

provided by an alternate path that shares nodes and links with the primary path. Fault

 37

tolerance dictates that the paths be as independent as possible so that a single failure

might not disable both.

c. Shortest Widest Least Congested Path (SWLCP)
SWLCP selects the shortest of the widest of the least congested paths. It

does this by first determining the least congested path in terms of packet loss rate. If

there are multiple paths of equal congestion, it chooses the widest of those. If necessary

to choose among equal widths, the shortest path will be selected.

SWLCP is used when the BestEffortManager performs congestion

bypass. If congestion has been detected in the region, then lack of congestion becomes

the number one priority in choosing paths in order to bypass the congestion that exists.

Whereas prior to congestion detection, congestion levels in the region are ignored,

congestion now becomes the main criterion. Ideally, this will result in the under-utilized

network periphery being used in periods of peak demand, easing the load that tends to

develop on the interior critical links.

4. Traffic Splitting
In order to accomplish load balancing, one of the main features of the

BestEffortTable agent, some method of splitting traffic must exist. That is, if the

current traffic split is 30/70 to a primary and alternate path to destination, how is the

30/70 split actually accomplished? The simplest solution would be round robin where

three packets would be sent on the primary path and then seven on the alternate.

However, this method can incur performance penalties for applications requiring packets

to arrive in the order they were sent, since the primary and alternate path may have

significantly different delay times. TCP, for example, will hold packets arriving on the

receiving end prior to presenting them to the Application layer. This process takes time

and processing power.

 38

PATH 1

PATH 2

0 1

2 3

4 5

6 7

98

H
A

SH
 FU

N
C

TIO
N

IN

OUT

Figure 8. Hashing Traffic into Buckets

For BE traffic management in SAAM, a better solution has been developed based

on the suggestion in [2]. Packets are sorted into ten buckets based on a hash of their

source IP address through a modulo-N function (N=10 in this case). These buckets are

then shifted discretely so that a single TCP session, for example, will never know it has

been rerouted. It certainly will not be split. Either the entire session will proceed on the

primary path or the alternate path, never a split between the two. This means that a 30/70

split might not really be 30% and 70%. If, for example, that BE traffic flow is comprised

of two equal traffic sessions between two host pairs, then it must be either 100% on one

path or 50%/50%.

 39

PATH 1

PATH 2

0 1

2 3

4 5

6 7

98

H
A

SH
 FU

N
C

TIO
N

IN

OUT

PATH 1

PATH 2

0 1

2 3

4 5

6 7

98

H
A

SH
 FU

N
C

TIO
N

IN

OUT

?

PATH 1

PATH 2
0 1

2 3

4 5

6 7

98

H
A

SH
 FU

N
C

TIO
N

IN

OUT
PATH 3

PATH 4

Figure 9. Load Balancing By Bucket Path Mapping

Hashing traffic into buckets results in a different behavior of the system. When

the BestEffortTable is shifting traffic during load balancing, it is not shifting 10%

at a time, but rather a bucket at a time. If no traffic is in a bucket, then shifting a bucket

has no effect. Conversely, if all the traffic is in a single bucket, shifting that bucket shifts

all of the traffic. With similarly sized buckets, tunability is limited only by number of

buckets and load balancing is realized. If one bucket is much larger than the others,

however, then the solution allows for no more balancing than a single path solution

would since practically, this has the same effect of switching a path for an entire flow.

5. Control Timing
In order to build a stable solution, consideration must be given to timing of the

corrective controls. On one hand, it is useless to act too quickly if the effect of the last

corrective action has not been fully assessed. Another corrective action might be

unnecessary. On the other hand, it is desirable to correct problems as quickly as possible

without needless hesitation. Therefore, there is always a tradeoff between rushing to

correct a problem and waiting to fully evaluate the effect of previous corrections. Over-

correction can lead to instability where a cycle begins of correcting a problem only to

create a new one in the other direction that needs further correction.

 40

The BE traffic management solution for SAAM presents another concern through

its use of distributed adaptive load balancing. With each of the routers acting

independently to correct congestion, is it possible for destructive interference to occur?

This problem has been noted in other solutions (such as OSPF) where all routers

immediately unload a congested route and move traffic elsewhere, creating a new

congested route.

SAAM’s BE solution mitigates this in three ways. First, while SAAM’s routers

act autonomously during load balancing, they are not synchronized. Therefore, their

corrective actions are usually staggered and less likely to result in network-wide route

flapping. Second, SAAM’s routers do not shift an entire traffic flow at once, but portion

by portion in incremental stages. Lastly, if global congestion occurs, SAAM’s server

takes over, ending distributed autonomous operation and instituting centralized

micromanagement.

The authors in [2] showed that stability can be guaranteed when node pairs

operate asynchronously in a MATE scheme. SAAM’s routers are not as asynchronous as

MATE assumes, but neither are they synchronized. Two effects govern their degree of

synchronicity. First, if the server instructs load balancing to take place on multiple

routers at the same time, the actual time of initiation will only differ by their delay time

from the server. Routers at the same distance from the server will be synchronized. This

synchronism is mitigated by the fact a node pair interrupts its traffic shifting whenever

that traffic flow ceases, even for a single packet interval. This would cause the

previously synchronized pairs to become asynchronous. Should the pairs remain

synchronous due to continuous traffic, however, potential for instability is mitigated by

the fact that the autonomous load balancing at the router only proceeds in one direction at

short time intervals: primary to alternate. Only the server can move traffic from alternate

to primary at short intervals. This happens by switchback and the server never initiates

more than one switchback at a time. Together, these design characteristics should

minimize the chance of the SAAM region failing to converge for a given network

condition, which would be greater if the routers were allowed to balance in either

direction. At longer intervals, the router will attempt to shift back to primary, but only

 41

one bucket of traffic at a time. If such a shift causes the congestion to reoccur, the router

immediately resumes the previous traffic split.

When SAAM’s server takes control during global congestion, stability is not an

issue. There is congestion everywhere and SAAM’s main concern is to ensure fairness

among contending flows. Still, convergence is attempted in this case by the server

waiting at least one local resolution timeout between sets of corrective actions. Table 1

shows the timing used for BE traffic controls.

Auto-configuration Cycle = 1 ACC 200 ms (nominal)

Number of Traffic Buckets = NB 10

Load Balancing – Redirection = 1 ACC 200 ms

Load Balancing – Reversion 30 min.

Congestion Bypass = NB ACC’s 2 s

Path Expiration 30 min.

Failure Detection / Response = 2 ACC’s 400 ms

Local Resolution Timeout = NB ACC’s 2 s

Table 1. Best Effort Traffic Control Timing

a. Auto-configuration Cycle Time
The entire BE traffic management timing scheme depends upon the auto-

configuration cycle time of the SAAM region. It is this cycle time that governs the

exchange of periodic “I’m alive” type messages. Added to these messages are the link

state advertisements (LSA’s) from each router. The auto-configuration cycle time is a

tunable parameter generally set to be greater than the round trip time between the server

and most distant SAAM router. A lower setting causes auto-configuration cycles to

initiate without evaluating information from LSA’s in the previous cycle as well as

causing more control channel overhead in the network. A higher setting makes the

SAAM server less responsive to changes in network conditions. For the current SAAM

prototype, auto-configuration cycle time is 200 ms. This means that the SAAM server is

 42

apprised of the complete network condition every 200 ms. It also means that, at any

given time, the information the SAAM server has about its region may be up to 200 ms

old.

b. Redirection Interval

Once congestion is detected, BestEffortManager notifies affected

BestEffortTable agents to begin load balancing, which initially involves

redirection. During redirection, the BestEffortTable agent shifts one bucket of

traffic at a time from the primary to alternate path each redirection interval. The

redirection interval is equal to the auto-configuration cycle time. The reason for this is

that the server knows the status of that congestion no sooner and no later than the next

LSA, which is sent once per auto-configuration cycle. Therefore, the

BestEffortTable agent performs redirection at the same interval until notified by

the server that congestion has cleared.

c. Reversion Interval
Once congestion has cleared, traffic that has been redirected remains on

the alternate path. This is not desirable in the long term for two reasons. First, as

mentioned earlier, the alternate path may not have the performance characteristics that

the primary path does. Second, there is less room to maneuver in the event of future

congestion in the region. Ideally, when congestion occurs, every node pair is on its

primary path and collectively, the congestion will resolve by one or more routers

redirecting traffic to its alternate paths. However, if too many node pairs are already

routing most traffic on their alternate paths, then load balancing may be ineffective and

the server will have to perform congestion bypass.

In the case of redirection, where congestion is being combated, time is of

the essence. This is not the case with reversion, where the goal is to gradually restore the

primary path topology and gain minor performance increases. Indeed, if reversion were

to happen too quickly, traffic may be reverted back to an area where congestion has not

subsided. Therefore, the reversion interval of 30 minutes was chosen such that network

conditions may have appreciably changed. Graphs in [10] show that wide-area Internet

traffic patterns only change appreciably over time periods on the order of hours. For

 43

SAAM deployment to a region smaller than the greater Internet, the reversion area may

be tuned to match that region’s expected usage patterns. Smaller reversion intervals may

allow BE traffic to resume on high performance links earlier, but may also cause

unnecessary cycles of congestion if the previous congestion has not cleared. As

discussed earlier, stability becomes a concern as reversion interval time approaches

redirection interval time. The sole consequence of longer redirection intervals is

unnecessary lingering on lower performance alternate paths while the primary path is

cleared. If congestion results on the alternate during this period, however, the server will

initiate a switchback to place all traffic back on the primary path.

d. Congestion Bypass Time

On detection of congestion, BestEffortManager will immediately

notify BestEffortTable agents on affected routers so that adaptive distributed load

balancing will begin. BestEffortManager will allow load balancing to run its

course in the hope that alternate paths can relieve the primary paths enough to eliminate

congestion. However, if the deployed primary and alternate paths are both congested,

then BestEffortManager will have to perform congestion bypass. The server

knows this is necessary after a time equal to the number of buckets multiplied by auto-

configuration cycle time. By this time, all traffic would have been redirected to the

alternate path for that node pair. So, for the current prototype, the

BestEffortManager would wait two seconds (10 x 200ms) and then perform

congestion bypass if the node pair is still congested.

e. Path Expiration Interval
When a region of the network becomes congested, all paths traversing that

region are affected. BestEffortManager will begin to unload this part of the

network and move traffic to unused periphery. It accomplishes this through a system of

path expiration. Once congestion bypass is performed on a node pair, that pair’s old

primary and alternate paths are marked as expired and will not be reused for BE traffic

until the path expiration interval elapses, which is 30 minutes. In the near term, this

prevents subsequent congestion bypass attempts from placing an alternate path in the

congested region. In the short term, it allows network usage of that region to subside

 44

prior to adding more BE traffic. Finally, these expired paths become available for

selective early reuse in the fairness procedures of BestEffortManager.

f. Failure Detection / Response Time
As explained in [15], the SAAM server will detect a failure in two auto-

configuration cycles, which is 400 ms for this prototype. The response time is the time it

takes for the BestEffortManager to inform affected BestEffortTable agents

of the failure, which happens immediately after detection. In the interim, packets

traveling on the affected path will be lost. Once that BestEffortTable receives

notification of the failure, all traffic will be transferred to the unaffected paths.

g. Local Resolution Timeout

During global congestion, BestEffortManager performs global

congestion resolution and proactive monitoring. This involves any number of positive

actions as detailed above in the rob-from-the-rich and give-to-the-poor fairness scenarios.

The local resolution timeout is equal to the congestion bypass time of two seconds for the

same reasons. It allows local resolution to proceed before taking any global action. In

this case, the local resolution in question is the new bandwidth that has been taken from

the rich and/or given to the poor. The timeout is also used as a delay between initiation

of proactive monitoring and any server action to combat congestion. This is necessary

since it may be that local resolution initiated just prior to the global congestion condition

will be enough to resolve the congestion. This timeout also adds to the stability of the

global congestion resolution scheme by preventing hasty action. The network is allowed

to settle after each global congestion resolution action is taken; only then are the rich and

poor classes recalculated for consideration of further action. The statistics for calculating

rich vs. poor are based on inputs that are exponentially smoothed, not instantaneous

measures.

6. Messages
A number of new messages are necessary to support the coordination of building

the BE topology and communication between BestEffortManager and

BestEffortTable agents.

 45

a. Edge Notification

1 2 16

Message Type Message Length Edge Router ID or Destination Interface Address (IPv6)

70 16 X.X.X.X.X.X.X.X.X.X.X.X.X.X.X.X

Table 2. Edge Notification Message Format

The BE topology is built through a process of edge router discovery.

When the SAAM region first stands up and the overall topology is built through auto-

configuration messages, all routers are assumed to be core routers that handle only

labeled QoS traffic. EdgeNotification messages are used by routers to alert the

server of either a new router or a new BE destination address. In the first case, a core

router will send an edge notification on receipt of its first BE traffic. This is a request to

be recognized as an edge router. If it is already an edge router, but it receives a BE

packet with an unresolvable destination address, it will send an EdgeNotificiation,

this time with the field containing the unknown IP address; this constitutes a request for a

new table entry. Table 2 shows the message format for EdgeNotification. The

size, name, and value of each message field are presented respectively in the three rows.

b. Best Effort Table Entry

1 2 16 4 4 4

Message

Type

Message

Length

Destination Address (IPv6) Path ID Serial Number Split

69 28 X.X.X.X.X.X.X.X.X.X.X.X.X.X.X.X X X X

Table 3. Best Effort Table Entry Message Format

The BestEffortManager exercises overall control of all BE traffic

through deployment of table entries for the BestEffortTable agents. These table

entries are sent in the message format shown in Table 3. The destination address field

carries those addresses through which the BestEffortManager has become aware by

edge notification messages. Path ID is determined by the server and corresponds to the

path that traffic will map to in that router’s FlowRoutingTable. The serial number

field is reserved for future use. The split field is not currently used by the server. Split is

set on receipt and further adjusted autonomously by deployed BestEffortTable
 46

agents. Future designs may allow the BestEffortManager to send table entries with

an initial split setting.

c. CongestionAdvisory

1 2 4 1

Message Type Message Length Path ID Color Code

71 5 X Red=1 / Yellow=2 / Green=3

Table 4. Congestion Advisory Message Format

CongestionAdvisory messages are sent from

BestEffortManager to BestEffortTable agents. The message contains two

pieces of data. The first is the path ID. CongestionAdvisory messages are always

sent in reference to a particular path, though in some cases, the BestEffortTable

agent will act based on the destination address the message refers to. The second piece of

data is the message’s color code, which describes the nature of the advisory.

• CongestionAdvisory-RED means that the path in question has

failed. The BestEffortTable agent is to reroute all traffic to the

remaining path and await redundancy restoration.

• CongestionAdvisory-YELLOW means that the path is congested.

The BestEffortTable agent is to begin load balancing immediately.

• CongestionAdvisory-GREEN means that congestion has cleared on

all paths toward a destination. The BestEffortTable agent is to

terminate load balancing and maintain the current split ratio.

E. STATE ANALYSIS
The BE management system here can be further explained through a state

transition analysis. Several states have been discussed above that are being tracked in the

BE management solution and used to make decisions. First, the edge routers are tracking

destinations, which are viewed as either congested or congestion-free with a current

traffic split. Servers are tracking paths, labeling them red, yellow, or green based on their

congestion condition. Servers are also tracking edge router pairs in noting their paths

 47

available, congestion condition, and time in local resolution procedures. Finally, the

entire SAAM region is viewed as either being globally congested or locally resolvable.

1. Single Node Pair Management

E1 E2

E1 E2

E1 E2

E1 E2

E1 E2

E1 E2 E1 E2

LOCAL
CONGESTION
RESOLUTION

POSSIBLE?

E1->S: EDGE_NOTIFICATION X 2

S->E1: BEST_EFFORT_TABLE AGENT

S->E1: BEST_EFFORT_TABLE_ENTRY X 2

S->E1: CA YELLOWYELLOWS->E1: CA

E1->S: EDGE_NOTIFICATION X 2

S->E1: BEST_EFFORT_TABLE_ENTRY X 2

S->E1: CA GREEN

S-
>E

1:
 C

A
 G

R
EE

N

AFTER 10 AC’S

AFTER 10 AC’S

NO?YES?

S->E1: BEST_EFFORT_TABLE X 2

S->E1: CA YELLOWYELLOW

P1

P2

P1

P2

P3

P4

P1

P3

P1(P3) P1

EDGE ROUTER
DISCOVERY /

AGENT
DEPLOYMENT

CONGESTION BYPASS

REDUNDANCY
RESTORATION

LOAD
BALANCING

= NO MORE ROUTES AVAILABLE

SWITCHBACK

GLOBAL
CONGESTION
RESOLUTION

 RED

Figure 10. Best Effort Management State Diagram

Figure 10 show the possible states that exist in the management between

BestEffortManager and a single pair of edge routers from a server’s perspective.

E1 and E2 are a pair of edge routers with P1-P4 being possible paths between them. As

discussed before and shown in the figure, the existing states and their transitions depend

on path congestion condition, path availability, and time. Ideally, load balancing,

congestion bypass, redundancy restoration, and/or switchback will always be successful

in restoring a state of congestion free flow between the node pair through multiple paths.

However, as shown in the figure, there are two ways to reach the undesirable end state

where global congestion is declared.

 48

2. Destination Management

GREEN

YELLOW

RED

REVERSION

REDIRECTION
S->E1: CA

S->E1: CA YELLOWYELLOW

S->E1: CA GREEN

SWITCH TRAFFIC TO
SURVIVING PATH

S->E1: BEST_EFFORT_TABLE X 2

-or-

 RED

Figure 11. Destination Management State Diagram

On the router end, BE traffic is managed on a per-destination basis. As shown in

Figure 11, destinations are colored either red, yellow, or green based on messages from

the server. During conditions green and yellow, the BestEffortTable is constantly

shifting traffic. During condition red, all table entries are modified so traffic is carried by

a surviving path and then the previous condition is resumed. Therefore, unless the server

sends new table entries in this case, reversion and redirection accomplish nothing other

than modifying the Split field in otherwise identical table entries.

 49

3. Path Management

P1 P2

P1 P2

P1 P2

P1 P2

P1 P2

P1 P2

P1 P2

P3 P4

SWITCHBACK

SW
IT

C
H

B
A

C
K

S->E1: CA YELLOWYELLOW

CONGESTION
BYPASS

P1 P2

LSA

LS
A

LSA

LSA

LSA

LSA

LSA

S->E1: BEST_EFFORT_TABLE X 2

S->E1: BEST_EFFORT_TABLE X 2

S->E1: CA GREEN
S-

>E
1:

 C
A

 G
R

EE
N

S-
>E

1:
 B

ES
T_

EF
FO

R
T_

TA
B

LE
 X

 2

Figure 12. Path Management State Diagram

Figure 12 shows the BE path management state diagram for the general case of no

path failures and two routes available for congestion bypass. P1-P4 are paths between a

pair of edge routers. Paths are colored green, yellow, or red to indicate whether they are

congestion-free, congested, or expired, respectively. LSA’s drive the state transitions

causing the server to take actions. Fundamentally, whenever congestion occurs on the

primary path P1, congestion bypass will be performed unless that congestion clears

within the local resolution timeout time. Switchback is performed in two cases:

congestion starts on alternate path P2 while P1 is congestion-free or congestion clears on

primary path P1 while P2 is congested.

F. DESIGN TRADEOFFS
The BE traffic management solution described here is one of an infinite number

that could have been chosen for SAAM. Throughout the course of development and

design, many tradeoffs have been made which require explanation.

 50

1. Maintaining BE Link Provision
Recently, SAAM added a new capability called inter-service borrowing, a feature

detailed in [2]. Inter-service borrowing allows IntServ and DiffServ, SAAM’s QoS

traffic, to borrow from each other if necessary to meet QoS demand. Such an idea could

have been extended to BE traffic. Here, it was decided that rather than focusing on

adding complexity to the inter-service borrowing method, the focus would be on how to

maximize use of the existing provision. This solution’s method of moving traffic to

underutilized periphery during periods of high demand increases the potential amount of

traffic that SAAM can handle within its 15% allotment for BE. Philosophically, QoS

management is the primary function of SAAM and temporary borrowing of QoS

bandwidth for BE is contrary to that.

2. Degree of Management Centralization
SAAM’s architecture consists of lightweight routers and heavyweight servers

[12]. Therefore, a mandate already exists for general division of labor. Still within these

bounds, decisions must be made about where to place each function of a management

scheme. Keeping the routers lightweight becomes the main constraint. The design

proposed in this thesis, therefore, attempted to place the majority of added burden on the

server end. Indeed, the software solution, while written in Java, aimed to be easily

translatable to a lower level language or even hardware. For the functionality required in

the edge router proposed in this thesis, the router needs just two extra data structures (best

effort table and destination status table) and some simple behavior that is driven by time

stamp checking (redirection and reversion).

3. Management Focus
The solution designed in this thesis does not involve the server as much as it

potentially could. In the case of distributed adaptive load balancing, the server is

unaware of the current traffic splits in node pairs throughout the network though this is

information that could be reported. It only knows which pairs are currently load

balancing and which pairs are not. This is an issue of management focus. The reasons

that this solution chose the standoffish approach are threefold. First, if the server is going

to manage all load balancing down to the bucket for each node pair, significantly more

communication would be required. Second, the job of the server becomes much more
 51

intensive in that it would now have to make a computation-based decision every auto-

configuration cycle for each node pair in load balancing. Finally, the solution is no

longer distributed and adaptive for the case of localized congestion. Instead, it becomes a

centralized intractable problem requiring the same heuristic that is applied with the

distributed approach (shift traffic to a congestion-free path). Granted, there is room to

include a minimum interference algorithm at this point, but being able to compute a near

optimal solution in the time of one auto-configuration cycle is doubtful. Overall, the

decision made to allow the load balancing to proceed autonomously at routers is because

the effort required at the server otherwise is considered not to be worth it for marginal (if

any) time reduction in resolving local congestion.

4. Granularity of Load Balancing
One arbitrary number that hasn’t been fully discussed yet is the number of

buckets used for load balancing. No operational tests were performed on any real-life

network, but ten buckets was generally viewed as being at least within an order of

magnitude of what a best number might be for an average network. If there are very few

buckets, load balancing may be too coarse to be effective as there is a greater chance of a

single bucket’s bandwidth exceeding either available path. If there are very many

buckets, then the response time to resolve congestion becomes less acceptable.

5. Granularity of Fairness Enforcement

 52

One of the goals for this solution was to provide fairness, which is a subjective

term. Therefore, for implementation, fairness had to be defined and put into logical terms

for software development. Ultimately, it was decided that during global congestion,

traffic flows whose loss rate lies within one standard deviation of the mean were not

being treated unfairly. The double negative of “not being treated unfairly” is used here to

allow fairness to be further defined. Therefore, SAAM takes no special action for those

flows. For those flows outside a standard deviation, however, measures are taken to

either reward or punish flows. This broad fairness range was chosen not on the basis of

hard science or field studies, but rather the realization that SAAM could be deployed on

vastly different sizes of networks. Statistically, populations of different sizes can be

normalized through parametric analysis and this serves as a starting point for a common

solution. Perhaps for specialized solutions in the future, fairness will be defined in more

tunable, concrete terms such as “loss rate less than X,” but for now a scalable solution is

used.

Still, one standard deviation can be a very large range for data that exhibits

sizeable scatter. Indeed, in test runs, it was found that mean plus or minus standard

deviation sometimes defined a range with head or tail outside of loss rate bounds 0 and

100 percent. This would preclude either a rich or poor class of flows, seemingly

eliminating some of the control that could have been exerted with a narrower range. The

guiding philosophy here is avoiding what is viewed as unnecessary degree of control.

That is, any sustained loss rate above 0% is generally regarded as unacceptable. There

aren’t enough degrees of unacceptability to warrant finer control measures than the broad

ones used here.

 53

THIS PAGE INTENTIONALLY LEFT BLANK

 54

IV. SAAM IMPLEMENTATION DETAILS

In order to add BE traffic management capabilities to SAAM, some modifications

and additions have been made to the existing SAAM code. First of all, changes have

been made to the existing code for design, testing, or interface issues. Then, new

capabilities are added, carefully maintaining the existing code’s modularity,

maintainability, and overall hierarchical structure.

A. CHANGES TO EXISTING SAAM CODE
Many changes have been made to the existing SAAM code for a number of

reasons. First, the new BE solution reflects a fundamental design change where BE

traffic in its current form is integrated seamlessly and no longer requires a flow request.

Second, changes have been made to allow simulation testing of the new solution.

Finally, changes have been made to allow the new solution to properly interface with the

existing software components.

1. Flow Generator

a. Elimination of BE Flow Requests

The previous version of FlowGenerator was based on the flow request

model where the agent would send a flow request, wait for the flow response, and then

initiate the BE flow. This has been changed such that no flow request is sent and no flow

response is needed for BE flows. For a BE flow, the agent will simply initiate the flow

on its own after a short delay.

b. Random Source Addressing for BE Packets

The previous version of FlowGenerator did not place source addresses

in packets, relying instead on the Network layer components to perform this task. Now,

capabilities have been added so that each packet receives a random source address to

simulate that it came to this router from somewhere else. This feature is necessary in

order to test the traffic splitting and load balancing features of the overall solution.

 55

2. Server Agent

ServerAgent now recognizes and handles EdgeNotification messages.

This is necessary in order to accomplish the discovery of edge routers and BE traffic

destinations.

3. Control Executive

a. Router Classification Data Members and Get Methods

New data members have been added into ControlExecutive in order

to properly classify the router in the overall BE management scheme. These members

are:

• isEdgeRouter

• isCoreRouter

• isProtectedCore

• isBorderRouter

All are private Booleans which indicate whether this router is an edge router, core router,

protected core router, or border router, respectively. New public get methods have been

added which will obtain the value of these members. They are:

• isEdgeRouter()

• isCoreRouter()

• isProtectedCore()

• isBorderRouter()

b. Router Status Display

The method displayRouterStatus() has been changed to reflect

whether this router is an edge, core, or border router.

c. BE Management
Two methods have been added for BE management capabilities. These

are:

 56

• acceptEdgeTraffic()

• sendEdgeNotification()

The method acceptEdgeTraffic() allows the resident BestEffortTable agent

to control when and if the router is BE-capable based on communication with the server.

The method sendEdgeNotification() is the means by which

RoutingAlgorithm can notify the server in event of first BE packet or BE packet

with unresolvable destination.

4. Demonstration Initiation Information

The class DemoInitInfo has been changed to add BestEffortTable to the

list of core agents.

5. Flow Request

FlowRequest has been modified to reflect that best effort is no longer one of

the possible types of flow requests.

6. Flow Routing Table Entry
Flow routing table entries have a field entitled “goodness.” Previously, this field

was initialized based on whether it was for a primary or backup route for a QoS flow. A

new constant, INSTALLED_FOR_BE, has been added to reflect an entry created initially

to carry BE traffic.

7. Message
New constants have been added to the superclass Message to reflect the identifiers

for the new messages in the BE management system: BEST_EFFORT_TABLE_ENTRY,

EDGE_NOTIFICATION, CONGESTION_ADVISORY.

8. Routing Algorithm

a. BE Packet Recognition and Handling
Previously, BE traffic was only recognized as part of an assigned flow

having been approved after a previously submitted flow request. Then, packets without a

proper flow label were discarded. Now, RoutingAlgorithm has been changed to

recognize general BE traffic. Specifically, if the ToS bits reflect BE and the path ID

portion of the flow label is zero, that packet will be treated as an ingress BE packet.

RoutingAlgorithm will hash the packet’s source address, modulo 10 the hash value,
 57

and then call the BestEffortTable to obtain the path ID to map that flow onto. In

the case where BE traffic has not been handled at this router before or if the packet

destination is unrecognized, RoutingAlgorithm will have the

ControlExecutive send an EdgeNotification message to the server.

b. Requeueing Capabilities

Previously, RoutingAlgorithm would drop all packets for which it

could not obtain routing information, including unlabeled BE traffic. Now, requeuing

capabilities have been added for certain situations. Specifically, for new BE traffic to a

core router or BE traffic toward a new destination, SAAM will not punish that traffic

flow by dropping packets while awaiting edge router promotion or route deployment.

Instead, a new requeueBestEffPkt() method will be called which will send the

packet back to an inbound queue.

9. Transport Interface
The method for making a BE flow request has been removed since this is no

longer part of the SAAM model.

10. Base Path Information Base

a. Interfaces for Best Effort Manager

BasePIB is the class within the Server package that contains most of the

server intelligence. It is also where BestEffortManager ties in to handle its

important functions. BestEffortManager’s main interaction is in

refreshPathQoS(). After BasePIB processes the latest LSA and updates QoS

parameters for paths in its database, it calls BestEffortManager from within this

method to report on BE loss rate for each path. It will make one of two calls based on

whether or not global congestion is occurring. In the case of global congestion, it calls

BestEffortManager’s proactiveMonitor() method. Otherwise, it calls

reactiveMonitor().

b. New Routing Algorithms

Several new routing algorithms have been added to BasePIB’s inner

class RoutingAlorithm. These have been added as methods:

• findPathSWP()
 58

• findPathSWMDP()

• findPathSWLCP()

These methods return paths obtained by the SWP, SWMDP, and SWLCP algorithms

respectively.

c. Inner Class Path

BasePIB’s inner class Path is the object representation of the paths

that BasePIB manages. BestEffortManager includes new management

capabilities requiring new constants, data members, and methods for Path. The

constants classify the path’s current usage in the best effort scheme as a color: GRAY,

GREEN, YELLOW, RED. The new data members are:

• bConnected

• bBestEffortLossRate

• bestEffortTrafficCondition

• bestEffortLossRate

• timeBEinitiated

• timeLastAdvisorySent

• timeConditionRed

Together, these Boolean and numeric variables enable BestEffortManager to track

and evaluate each path for BE management. Actual manipulation of the variables occurs

with the following new methods:

• initiateBestEffortTraffic()

• terminateBestEffortTraffic()

• newCongestion()

• congestionCleared()

• expireBEpath()
 59

• unexpireBEpath()

d. Access Modifiers
Previously, all path management and route deployment took place within

BasePIB. In accordance with the design principle of information hiding, this enabled

complete usage of private access for associated inner classes and data structures.

BestEffortManager was created as a separate, external class from BasePIB based

on the software design principle of modularity. In order to allow the necessary visibility,

the following members of BasePIB had their access changed from private to protected:

• Path

• PathQoS

• InterfaceInfo

• RoutingAlgorithm

This enables BestEffortManager and all other classes within the Server package to

see these inner classes.

11. Server

a. Auto-Configuration Cycle Sharing

Previously, Server was given its auto-configuration cycle time by the

DemoStation during configuration. No further sharing of this information was

required and it was kept as a private member. BestEffortManager, however, needs

this data to synchronize several of its methods which key on the periodicity of LSA’s,

which is equal to the auto-configuration cycle period. Therefore, a new method,

getAC_cyclePeriod(), was added to Server to share this information.

b. Communications

BestEffortManager requires two new server-to-router messages:

congestion advisories and best effort table entries. These are sent via the Server

through new methods sendCongestionAdvisory() and sendBETUpdate(),

respectively.

 60

B. ADDITION OF NEW CAPABILITIES

1. Best Effort Manager

BestEffortManager is a new class created in the saam.server package

that handles all the BE management on the server end. Functionally,

ControlExecutive is running on a device. If the device is acting as a server, then

the ControlExecutive has a Server agent installed, which has a

BestEffortManager as one of its components.

saam.server.BestEffortManager

alternatePathForThisNodePair()
calculateFairnessVariables()
computeMean()
computeStdDev()
expireBEpaths()
getThisNodePairsBEpaths()
giveToThePoor()
globalCongestionIsOccurring()
handleBEpathFailure()
initiateGlobalCongestionResolution()
lossRateFromThisNodePair()
primaryPathForThisNodePair()
proactiveMonitor()
processEdgeNotification()
reactiveMonitor()
reclaimExpiredBEpaths()
restoreRedundancy()
robFromTheRich()
switchback()
terminateGlobalCongestionResolution()
twoBEroutesActive()
unexpireBEpaths()
updateBEtopology()

Figure 13. BestEffortManager Class Structure

2. Best Effort Table

BestEffortTable is a new class within the saam.agent.router package.

BestEffortTable extends Hashtable from the java.util library and

implements the TableResidentAgent and MessageProcessor interfaces.

 61

saam.agent.router.BestEffortTable

add()
getBestEffortTableEntry()
getMessageTypes()
getTable()
hasEntry()
install()
processMessage()
query()
receiveEvent()
receiveFlowResponse()
redirect()
revert()
toString()
transferState()
uninstall()

saam.event.MessageProcessor

processMessage()

saam.agent.TableResidentAgent

getTable()
install()
query()
receiveEvent()
receiveFlowResponse()
transferState()
uninstall()

Figure 14. BestEffortTable Class Structure

BestEffortTable agent has an inner class TrafficDestination to

manage BE traffic on a per-destination basis rather than per-path.

3. Messages

a. Best Effort Table Entry

BestEffortTableEntry is a new class within the Message package

that extends Message.

b. Edge Notification

EdgeNotification is a new class within the Message package that

extends Message.

c. CongestionAdvisory

CongestionAdvisory is a new class within the Message package that

extends Message.

 62

V. TESTS AND RESULTS

The BE traffic management solution proposed in this thesis is complex. The

solution promises many capabilities in managing BE traffic in a SAAM region. To

conduct initial validation and verification of these capabilities, a series of tests have been

performed. All tests were performed using the software simulation of SAAM’s

DemoStation [XML SAX Parser] version 1.0 with custom test topologies (written as

XML files) and the flow generator and sink agents developed in [11]. In order to not

overload the processing capabilities of the host computer and to facilitate data capture,

simulation-to-real time scales of 200-500 were used in all tests (i.e. 200-500 seconds was

required to simulate one second of real time).

The overall focus of testing was more qualitative than quantitative. Primarily, the

tests are used to show that the solution built from scratch performs as designed without

concern for optimization. More exhaustive data analysis testing to fine-tune internal

design parameters on operational networks is available as possible future work.

A. EDGE ROUTER DISCOVERY AND PACKET REQUEUEING
The most fundamental test of the overall solution is that it can stand up and begin

operating. The solution was developed with the idea that BE routers and traffic

destinations will be discovered at run-time. Initially, a SAAM region will be composed

entirely of core routers. Once BE traffic begins to flow, the affected core routers should

be promoted to edge routers with their BestEffortTable agents receiving routing

entries for the BE traffic. Further, the BE packets that initiate the flow should not be

dropped during the discovery process, but rather, requeued until the router is able to

handle them.

 63

1. Test

FLOW
SINK

A

D

B

C

SERVER FLOW
GEN

Figure 15. Discovery / Requeueing Test Topology

The test topology shown in Figure 15 was developed and loaded into the

simulator. There is a single source of BE traffic entering the region at Router A, destined

for Router C. Therefore, Routers A and C should be promoted to edge routers. Router

A’s BestEffortTableAgent should receive two table entries reflecting the two

routes to Router C.

2. Results
The test was successful in all areas. First, the discovery of routers and interfaces

was successful.

Figure 16. Edge Discovery

 64

IE3 »Server A [DenK>-EmulationPort: 9002] [SaamPort: 9001J [Currently displaying: Best Effort Manager x
Fite Protocol Stack Routing T antes Active Channels Open Ports Application Agents Server Admin

Processing edge notification.

A

Adding 99.99.99.99.4.0.0.0.0.0.0.0.0.0.0.1 to edge routers vector.

Adding 99.99.99.99.4.0.0.0.0.0.0.0.0.0.0.1 to edge interfaces vector.

Updating best effort topology...

Completed updating best effort topology.

Processing edge notification.

Adding 99.99.99.99.5.0.0.0.0.0.0.0.0.0.0.2 to edge routers vector.

Adding 99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.2 to edge interfaces vector.

Updating best effort topology...

Completed updating best effort topology.

Second, routes were successfully deployed for BE traffic to Router A. Matching

flow routes were also deployed to Router A’s flow routing table and traffic was

successfully carried from Router A to C.

Figure 17. BE Route Deployment

Figure 18. Flow Routing Entries to Support BE

Finally, to verify the requeuing mechanism was working, the same test was run

with a controlled number (100) of packets. Due to successful requeueing, every packet

made it to Router C despite being initially delayed at ingress Router A during edge

promotion and route deployment.

Figure 19. 100 Packet Generation

Figure 20. Receipt of 100th Packet

B. LOAD BALANCING
Simply routing BE traffic is fundamental. In order to deliver on its promise of

providing a better best effort, the solution must successfully perform its built-in load

balancing capabilities.
 65

Router A [Demo-EmulationPort: 9004] [SaamPort: 9003] I ltly displaying: Best Effort T

File Protocol Stack Routing Tables Active Channels Open Ports Application Agents

- □ X

Dest IPv6 Address Map to Path Traffic Split
99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.2 32
99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.2 92 2Q

Router A [Demo-EmulationPort: 9004] [SaamPort: 9003 ■l»I.U„'l.
File Protocol Stack Routing Tables Active Channels Open Ports Application Agents

(splaying: Flow Routing Tabl - □ x

Path ID Interface Number Next Hop IPv6 Address
99.99.99.99.1.0.0.0.0.0.0.0.0.0.0.1 2

Goodness;

::.■'

92
99.99.99.99.2.0.0.0.0.0.0.0.0.0.0.2 2
99.99.99.99.4.0.0.0.0.0.0.0.0.0.0.2 2

Router A [Demo-EmulationPort: 9004] [SaamPort: 9003] [Currently displaying: PSRouterA-Sel

File Protocol Stack Routing Tables Actrve Channels Open Ports Application Agents

checksum: 0

--> Sending Packet »100
Closing Data File III!
Closing Buffered input stream

_ n x

ReceiverlPVÖ: 99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.2 receiver Port : 6000 Dist: selfSimiiar

Router C [Demo-EmulationPort: 9008] [SaamPort: 53 itly displaying: RouterB-

File Protocol Stack Routing Tables Active Channels Open Ports Application Agents
<JUl d pdlftBl Hum

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.7 pk»; 98 sequence*: 1178812722 payload length: 841 UDP header payload length field: 845
Got a packet from:
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.2 pkt*: 99 sequence*: 171131191 paytoad length: 841 UDP header payload length field: 845
Got a packet from:
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.6 pkt*: 100 sequence*: 1159737158 payload length: 841 UDP header payload length field: 845

rm on 131.120.9.59 Monitoring Port 6000

. n x

1. Test

FLOW
SINK

A

D

B

C

SERVER FLOW
GEN

Figure 21. Load Balancing Test Topology

The topology shown in Figure 21 was loaded into the simulator. This topology is

identical to that of Figure 15, which was used during the discovery test, with one

exception. The primary (widest) route from Router A to Router C will be insufficient to

carry all of the BE traffic between them. Therefore, the Server should discover this

through an LSA message and notify Router A’s BestEffortTable agent to begin

load balancing. Load balancing should consist of shifting traffic from the primary to

alternate route until congestion clears followed by a gradual reversion of traffic to the

primary path.

 66

Figure 22. Test Agent for Load Balancing

Specifically, the agent shown in Figure 22 was loaded, which requests 625 kbps

of bandwidth, using a pseudo-random self-similar packet distribution. Links AB and AD

(see Fig.21) were edited to each have a capacity of 622 kbps. Not only will this force

congestion when all traffic is on a single link, it will test to see whether load balancing

will find the solution that exists (traffic split so that neither link is congested).

2. Results
The simulation proceeded as expected and load balancing was successful in

finding a lossless routing solution involving both paths.

 67

[Demo F mulationP»

Fili Protocol! Routing T Active Ch< Open P

-
Installing...
Time scale : 200
Payload data stream bytes available: 426174
Instance Name : RouterA-SelfSimilar-1
ReceiverIPV6 : 99999999 30000000000 2
Receiver Port : 6000
Type of Service :BestEffort
Initial Delay : 200 milliseconds
Test Duration : 10000 milliseconds
Distribution : Self-Similar
Bandwidth: 2500.0 kbps
Load:0 25
Sources: 9
Number of Packets : 100000
Requested Bandwidth (factoring load) : 625 kbps
Trace Generation Duration : 481 MS
My address is : 131.120.9.59

0

10

20

30

40

50

60

200 400 600 800 1000 1200 1400 1600 1800

Time (ms)

Lo
ss

 R
at

e
(%

)

Figure 23. Primary Path Loss Rate vs. Time for Load Balancing Test

Once the 625 kbps flow generating agent-initiated traffic, loss rates shown in

Figure 23 were observed. As expected, there was no loss rate initially as the outbound

queues filled up and absorbed excess packets. At some time between 400ms and 600ms,

the primary path’s interface’s outbound queue began to overflow resulting in a reported

loss rate on the 600ms LSA. This caused the BestEffortManager to send a

CongestionAdvisory-YELLOW message to initiate load balancing by Router A’s

BestEffortTable agent. Router A instantly shifted to a 90/10 split.

Next, the reported loss rate continues to increase for one more cycle and then

starts to drop rapidly. Router A continues to shift traffic during the time of continued

reported loss. Finally, at 1600ms, loss rate has decayed to zero. A

CongestionAdvisory-GREEN message was sent to Router A causing termination of

load balancing and maintenance of current split.

Figure 24. Load Balancing Test Final Split

 68

Router A [Demo-EmulationPort: 9004] [SaamPort: 9003] [Currently displaying: Best Effort Ta

File Protocol Stack Routing Tables Active Channels Open Ports Application Agents

-a*

Dest IPv6 Address
99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.2
99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.2

lap to Path Traffic Split

At that time, Router A had reached a split of 50/50 between the primary and

secondary paths. Due to the fact that reported loss rate is exponentially smoothed (with α

= 0.7 over 100ms sampling intervals), Router A may have over-corrected as reported loss

rate decayed below the threshold. If this was the case, then the reversion process should

gradually place traffic back onto the primary path.

Unfortunately, a reversion interval of 30 minutes and a simulation time scale of

200 make for a very long (100 hours) test. Therefore, to test the reversion feature, the

code was temporarily modified to make the reversion interval equal to the redirection

interval of 200ms in order to verify reversion operates as designed. The same scenario

was run with this modification in place. As expected, reversion did begin to take place

once the initial congestion had cleared. Not surprisingly, the split reverted all the way

back to its initial setting of 100/0, which, of course, caused the congestion to reappear

since load had not changed. In the solution’s real life implementation, this amount of

reversion would have taken 2.5 hours (five buckets of traffic times 30 minutes), hopefully

enough time for the network’s usage to lessen. Otherwise, load balancing would be

expected to resume and find a loss-free balance.

C. CONGESTION BYPASS

If congestion were to develop in a region affecting both a BestEffortTable

agent’s routes to a destination, then load balancing would be useless. This is where the

overall solution’s congestion bypass mechanism comes to the rescue.

 69

1. Test

FLOW
SINK

A
D

B

C

SERVER FLOW
GEN

E

F

Figure 25. Congestion Bypass Test Topology

The test topology shown in Figure 25 was developed and loaded into the

simulator. A single BE flow originates on Router A destined for Router C. Congestion

will develop on the initial two routes. This should cause load balancing to take place for

2 seconds, shifting all traffic to the alternate path. After this time (the local resolution

timeout is 2 seconds), the BestEffortManager should perform congestion bypass

and deploy the other two routes to Router C. Router A’s BestEffortTable agent

should install the new routes and direct 100% of the traffic to the new primary route.

2. Results
The test was completed successfully.

Figure 26. Congestion Bypass Test Results

 70

Router A [Demostation Port: 90041 [Emulation Port: 9003] [Currently displaying: Best Effort Path Table

hie Protocol Stack Routing Tables Active Channels Open Ports Application Agents

^MJ_xJ

Dest IPv6 Address

Fl Piotoci Routini Active (Open Applicati Serve

[Demostation Port: 9004] [Emulation Port: 9003] [Currently displaying: Best Effort Path Table
:ack Routing Tables Active Channels Open Ports Application Agents

^JnJ_x]

Dest IPv6 Address

39.99.99 39.5.0.0.0.0.0.0.0.0.0.0.2

Traffic Split

^JnJjiJ
Fi Protoci Roiitii« Active (Open Applicati Serve

Router A [Demostation Port: 9004] [Emulation Port: 9003] [Currently displaying: Best Effort Path T<

File Protocol Stack Routing Tables Active Channels Open Ports Application Agents

Dest IPv6 Address Map to Path Traffic Split

99 99 99 99 5 0 0 0 0.0 0 0 0 0 0 2 100 10

Congestion bypass initiated for nodes 1 to 6.
Deploying path 146 as the new primary path.
Congestion Advisory GREEN sent to node 1.
Deploying path 100 as the new alternate path.

As seen in Figure 26, everything went as expected. Initially, paths 114 and 196

were deployed as the primary and alternate routes from Router A to Router C. As soon

as congestion was noted on path 114, a CongestionAdvisory-YELLOW message

was sent to Router A’s BestEffortTable agent. Load balancing goes into effect for

10 auto-configuration cycles, by which time all traffic has been directed to alternate path

196. Now that the local resolution timeout has expired, the BestEffortManager

initiates congestion bypass procedures and deploys routes 100 and 146, which avoid the

congestion.

D. FAIRNESS
Load balancing and congestion bypass work well when congestion is in isolated

pockets of the network and can be avoided through active management by the server.

When congestion is everywhere (global), all methods of congestion avoidance become

useless. Here, the BE management solution turns its attention from congestion avoidance

to fairness enforcement.

1. Test
The fairness enforcement procedures cover an infinite number of situations

ranging anywhere from two competing hosts to millions. It is impossible to develop

every single scenario that could happen or even a representative scenario. Rather, the

procedure is tested to see if it properly carries out its two main corrective actions: robbing

from the rich and giving to the poor.

FLOW
SINK

A

D

C

E

SERVER

B

FLOW
GEN

FLOW
GEN

Figure 27. Fairness Test Topology

 71

The topology shown in Figure 27 was developed and loaded into the simulator.

The flow generators for Routers A and B provide more load than the network can handle,

forcing global congestion. When and if BestEffortManager recognizes the global

congestion, test signals will be inserted marking the A-E flow as rich and the B-E flow as

poor. BestEffortManager should take appropriate measures at that point to ensure

fairness.

2. Results

The test was successful with the BestEffortManager taking correct actions.

Figure 28. Fairness Test Results

As programmed, BestEffortManager waited to see if the situation could be

corrected by local resolution. After that time, BestEffortManager initiated

proactive monitoring and global congestion resolution procedures to include an initial

round of loss rate statistics. It then waited another local resolution timeout to ensure any

local resolution measures enacted just before global congestion started were allowed to

run their course. Indeed, by that time the loss rate had improved (see Fig. 28), but

proactive measures were still in order. BestEffortManager successfully completed

a rob-from-the-rich procedure for A-E and a give-to-the-poor procedure for B-E.

E. PERIPHERY UTILIZATION
One of the hopes for the new BE management solution is for a particular

emergent behavior: network periphery utilization. The new system for BE traffic

management should cause the network periphery to be utilized when the network center

 72

Fü Protoco Routing Active Cl Open I Apphcatio Server

1 Server A [Demostation I

WARNING!
WARNING!
WARNING!
GLOBAL CONGESTION
Initiating global congestion resolution procedures.
C a I c u I atl n g fa I rn e s s va nable s
Mean loss rate is 13.89%.
Loss rate SD is 31.066436873256%.

Attempting to rob from the rich ana give to the poor

Calculating fairness variables...
Mean loss rate is 3.19%.
Loss rate SD is 7.144235438449659%.
Deactivated path 82 for node pair (1.4).
Robbed from the rich.
Reset traffic split to 100/0 for node pair (5.4).
Gave to the poor.

is overloaded. Further, this behavior should emerge, as it were, from the simple

underlying algorithm of load balancing, which is not at all concerned with centers or

peripheries.

1. Test

FLOW
SINK

A

H

B

SERVER

C

D

E
G

F

FLOW
GEN

FLOW
GEN

Figure 29. Periphery Utilization Test

The topology shown in Figure 29 was developed and loaded into the simulator.

All links have equal bandwidth causing all paths comprised of these links to have equal

bandwidth as well. Therefore, the primary paths assigned for BE traffic from Routers A

and C to Router E should both share Router G and the link GE. The combined offered

load was purposely designed to overwhelm link GE and force load balancing to take

effect. Once the congestion clears, load balancing should terminate. The final state of

the network should be one in which the peripheral links share some of the load.

 73

2. Results

Figure 30. Periphery Utilization Test Results

The test was completed successfully with results as expected. Initially, Routers A

and C were given primary paths 83 and 76, respectively. As these were chosen by the

SWP algorithm, they shared Router G and link GE. Once congestion developed,

BestEffortManager sent CongestionAdvisory messages to effect load

balancing. This caused Routers A and C to shift traffic to alternate paths 212 and 134,

respectively. These paths were chosen by the SWMDP algorithm and contained links

and nodes on the periphery of the network. Traffic cleared when 70% of the traffic had

been shifted to peripheral paths.

F. COMPARATIVE BENEFIT
The previous tests have provided a mostly qualitative perspective in examining an

overall network. The last aspect that needs to be examined is a quantitative one that will

examine a single flow for comparative benefit with the new BE solution.

 74

[Demostation Port: <)()() I] |l miilation Port: 9003] [Currently displaying: Best Effort Path Table

File Protocol Stack Routing Tables Active Channels Open Ports Application Agents

^JnJ_xJ

Desl IPv6 Address
99 99 99 99 4 0.0.0.0.0.0.0.0.0.0.1 259

Map to Path Traffic Split

IsÄBE,- EE
Router C [Demostation Port: 90081 [Emulation Port: 9007] [Currently displaying: Best Effort Path Tal

Hte Protocol Stack Routing Tables Actwe Channels Open Ports Application Agents

_ n x

Fi Protoc Routine Active (Open Applicati S

New congestion on primary path 83.

Congestion Advisory YELLOW sent to node 4.

New congestion on primary path 76.

Congestion Advisory YELLOW sent to node 2.

Congestion cleared on path 83.

No more congestion for node pair (4.3).

Congestion Advisory GREEN sent to node 4.

Congestion cleared on path 76.

No more congestion for node pair (2.3)|

Dest IPv6 Address
99 99 99 99.2.0.0.0.0.0.0.0.0.0.0.1 260

Router A [Demostation Port: 900-1] [Emulation Port: 9003] [Currently displaying: Best Effort Path T

Füe Protocol Stack Routing Tables Active Channels Open Ports Application Agents

Dest IPv6 Address
99 99 99 99 400000000001

.Router C [Demostation Port: 90011] [I mulation Port: 900/] | Currently displaying: Best Effort Pa

Füe Protocol Stack Routing Tables Active Channels Open Pods Application Agents

Desl IPv6 Address Ma p to P ath
).99.99.99.2.0.0.0.0.0.0.0.0.0.0.1 260

JnJ_xJ

■

1. Test
The load-balancing test from before will be repeated to examine the difference

between loss rates when load balancing is enabled or disabled.

Offered Load 750 kbps

Primary Path Bandwidth 622 kbps

Alternate Path Bandwidth 622 kbps

Table 5. Load Balancing Test Parameters

The simulation will be run five times each for the cases with and without load

balancing. In the load balancing case, loss rate should eventually return to zero as traffic

is split between the primary and alternate paths. In the case without load balancing, a

loss rate should persist indefinitely.

2. Results
The results show an appreciable benefit from load balancing in this case.

0

10

20

30

40

50

60

70

0
40

0
80

0
12

00
16

00
20

00
24

00

Time (ms)

Lo
ss

 R
at

e
(%

)

With Load
Balancing
Without Load
Balancing

Figure 31. Loss Rate Comparison With and Without Load Balancing

Figure 31 shows the average result for each case over five test runs. As expected,

the performance is similar initially. Both flows experience no loss while the packet

 75

queue is filling up. The queue overflows near 800ms causing packet loss. In the case

without load balancing, the lossy condition persists. In the load balancing case, however,

packet loss ceases after about 1.6 seconds.

 76

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

1. Requirements Revisited
The BE traffic management solution developed in this thesis addresses all

previously stated requirements and meets those requirements fully or in part.

a. Security
While the solution developed herein offers no fully implemented security

features for BE traffic, the underlying code allows future developers to set a software

switch that will identify a router as a protected core router.

b. Light-Weight Routers
SAAM’s routers remain lightweight as the servers of SAAM take on

almost all of the memory and computational requirements associated with the developed

solution.

c. Interoperability
Due to the handling added for unlabeled IPv6 packets, SAAM’s

interoperability has been enhanced with regard to BE traffic.

d. Fault Tolerance
The solution developed ensures complete fault tolerance for BE traffic

with regard to connectivity. There would have to be no surviving path between a source

and destination for traffic between the two to be permanently disrupted.

e. Fairness
The solution developed addresses fairness in times of resource contention.

This fairness is only between node pairs, not flows. Further, it is of rather coarse

granularity based on exponentially smoothed reported loss rates.

f. Adaptive Response Mechanisms
The solution developed has successfully incorporated adaptive response

mechanisms, allowing automatic rerouting based on changing network conditions.

 77

g. Stability
Stability has been addressed through careful selection of time constants.

However, no testing has been performed in the area of convergence-time minimization

through parameter tuning.

h. Scalability
Scalability will depend on memory and CPU speed of deployed routers.

The solution developed herein has addressed scalability through its economical choice of

when and where to deploy the table entries and activate the agents needed to handle BE

traffic.

i. Intelligent Provisioning
Intelligent provisioning has been achieved by the solution’s method of

assigning high performance routes during periods of low load and then moving traffic to

less utilized areas when congestion results in a region of high demand.

j. Packet Recovery
This solution provides for a number of packets up to the router’s inbound

queue size to be buffered while the router awaits BE characterization.

2. Overall
SAAM now has an effective, but not necessarily optimal, solution for managing

BE traffic. This solution builds on the strengths of the SAAM architecture and stays true

to its core paradigm. SAAM now has the potential to deploy as an integrated,

comprehensive network solution rather than just a module for handling QoS traffic.

The Internet may provide a “best” effort, but SAAM delivers an even better effort

through intelligent central management. BE users in a SAAM region can expect more

than just the connectivity promised elsewhere. SAAM does indeed provide a “better best

effort”.

B. RECOMMENDATIONS FOR FUTURE WORK
This thesis has successfully brought BE traffic management to SAAM. In many

ways, however, it should be viewed as “Version 1.0.” There are several unanswered

questions as well as areas for improvement. These are left open as areas to be researched

and/or improved by future thesis students and SAAM developers.

 78

1. A Border Gateway Agent
The routers at the borders of SAAM regions will need to know where to route BE

traffic leaving the region. One solution would be to develop a border gateway agent for

those routers. This agent should handle an exterior gateway protocol such as BGP in

order to exchange routing information with external, non-SAAM routers. This will

simplify SAAM’s interior BE routing as all BE traffic could be directed to the router(s)

with border gateway agents.

2. Security Features
SAAM’s BE policy could be used as another avenue of attack by malicious users.

For example, a denial-of-service attack could cycle the congestion handling mechanisms.

Now that the BE solution for SAAM has been developed and implemented, classic BE

security research should be undertaken.

3. Deployable Agents
Currently, the new router agents developed in this thesis are among the “core

agents,” those that are preinstalled in every router. This means that they remain latent

until that router receives BE traffic, if ever. One avenue that could be explored is the

desirability of making the BE agents deployable and only sending to a router on a need

basis.

4. Fine Tuning of Parameters
In building this solution from scratch, many of the parameters involved were

chosen more on the basis of reasonableness than anything else. For values such as the

number of traffic buckets, reversion time, and path expiration time, more extensive data

analysis could be performed with the intent of recommending a range of values for given

situations. Convergence time is an important consideration for routing protocols and

could be a possible starting point for further analysis involving the change of these

parameters versus various network conditions.

5. An Even Better Best Effort
There are several areas in the solution where the management schemes could be

made more complex and possibly more effective. On the server end, total control could

be assumed by developing an algorithm seeking to manipulate all path splits. Currently,

the server just deploys paths and turns load balancing on and off. On the router end,
 79

there is no limit to the number of paths that could be deployed to a destination. Perhaps

an algorithm could be developed where each node pair has three paths. Even more, each

router could be given a full set of disjoint paths to a destination. Again, the supporting

algorithms would have to be developed for these cases in regard to how to accomplish

load balancing in this more complex arrangement.

6. Implementation of Other Algorithms
While they do take network-wide congestion into account, the algorithms used in

this solution do not take full advantage of all the SAAM server has to offer. For instance,

all of the path finding algorithms described for this solution take a fundamentally greedy

approach that focuses on a single node pair. SAAM’s servers could potentially make

better decisions through a class of path finding algorithms that focus on “minimum

interference.” Minimum interference algorithms take into account where other paths

have been established and in some cases a heuristic approach attempting to minimize

interference with some future path. As it is, the only consideration this solution gives to

other deployed paths is taken through attention to congestion parameters.

7. Refinement of Fairness Approach
The fairness measures adopted by this solution are only on a per-aggregate-flow

basis. A finer solution would be to provide fairness between hosts or sessions.

Additionally, the methodology adopted of a Robin Hood do-good approach based on

coarse statistical measures could be made more sophisticated. For one, fairness could be

better defined than loss within a standard error of mean. Additionally, rather than giving

and taking entire paths to node pairs, a rate control could be instituted which would allow

for a measured sharing.

 80

APPENDIX A: GLOSSARY

Address Resolution Protocol (ARP)
A protocol that dynamically discovers the physical address of a system, given its IP

address.

Admission Control
The portion of QoS management concerned with whether or not to admit a flow and

approve its flow request.

Application layer
One of the seven layers in the OSI model for computer communications. It is the layer in

which applications and services run.

ARPCache
The class in the SAAM software that provides functionality roughly equivalent to an

ARP cache table on a conventional router.

Autonomous System (AS)
An internetwork that is part of the Internet and has a single routing policy.

Best Effort (BE)
The term applied to traditional Internet traffic for which no QoS guarantees are made

Delay jitter
For a given packet, the amount by which the packet’s delay varies from the mean delay

for that stream of packets.

Delay variation
-see “delay jitter”-

Differentiated Service (DiffServ)
A model for handling QoS traffic in which multiple flows with equal service

requirements are aggregated into a class of service.

 81

Dijkstra’s algorithm
A well-known algorithm named after Edsger Dijkstra that computes the shortest path
between two nodes in a graph.

Flow label
Given to packets in an assigned SAAM QoS flow, the label concatenates a flow

identification and a path identification for flow and path management.

Flow routing table
A table located in SAAM routers that routes packets based on flow labels.

Heavyweight
A term given to software components designed with no concern for processing power

and/or memory requirements.

Hop
Refers to the travel between adjacent nodes in packet-switched networks.

Integrated Service (IntServ)
A model for handling QoS traffic in which state is maintained on each flow due to

allowing flow-individualized QoS parameters.

Internet
When capitalized refers to the entity that is the worldwide computer internetwork. Lower

cased usage is proper only when spelled out as internetwork referring to a part less than
or separate from the worldwide portion.

Internet Draft
A document submitted as part of the Internet standards development process. It is for

comment in open forum, but unlike the similar RFC document, it has an expiration
date.

Internet Engineering Task Force (IETF)
A set of working groups made up of volunteers who develop and implement Internet

protocols.

 82

Jitter
-see “delay jitter”-

Lightweight
A term given to software components designed to be lean in terms of processing and

memory requirements.

Link-state flooding
The process by which neighboring link-state protocol routers share information through

occasional saturation of interior links with topology information. This saturation is
necessary to ensure every router receives all sharing information from every other
router.

Local Preference
In BGP, a purely internal path attribute that can be used to set preference for external

routes.

Local resolution timeout
For SAAM’s BE traffic management solution, it is the time equal to the maximum time it

could take for a full cycle of load balancing to occur, which is equal to the number of
buckets multiplied by the auto-configuration cycle time.

Multiexit Discriminator
In BGP, a path attribute that can be assigned by a neighboring AS that indicates

preference among multiple routes between the two AS’s.

Network layer
One of the seven layers in the OSI model for computer communications. It is the layer

through which physical connections become abstracted and dissimilar entities can be
viewed as a logical network of links and nodes.

Next Generation Internet (NGI)
A Presidential Initiative with primary goal of researching network technologies to enable

the Internet to scale in size, speed, and reach.

Next hop
A term referring to the next sequential physical link a packet must traverse in a packet-

switched network.

 83

Poison reverse
A technique to prevent circular traffic in RIP domains in which neighbors tell their next

hop for a route that the cost through them is infinity.

Quality of service (QoS)
A term referring to any combination of a number of performance metrics concerning data

flow through a network.

Reachability
A term used in BGP that indicates whether or not a given destination is reachable.

Redirection
In SAAM’s BE traffic management, the process by which traffic between a source and

destination is redirected to the alternate path.

Request for Comment
A document submitted as part of the Internet standards development process. It is

permanently archived and tracked to indicate the state of the technology development
for its research area.

Resource Management
The portion of QoS management concerned with tracking resources and their current

usage.

Reversion
In SAAM’s BE traffic management, the process by which traffic between a source and

destination is reverted back to the primary path.

Robin Hood
A mythical vigilante from Merry Olde England who robbed from the rich and gave to the

poor.

Route flapping
The phenomenon in which a dynamic routing solution causes a given traffic flow to

constantly oscillate between multiple routes.

 84

RoutingAlgorithm
The class in the SAAM software that provides functionality roughly equivalent to the

routing algorithm on a conventional router.

Server and Agent-based Active Network Management (SAAM)
A comprehensive network management solution being developed at the Naval

Postgraduate School that seeks to provide management for QoS traffic while
maintaining the underlying robustness of the TCP/IP network architecture.

Service Level Agreement (SLA)
An agreement between neighboring AS’s or ISP’s that concerns route information

sharing and traffic carrying among other things.

Split horizon
A technique to prevent circular traffic in RIP domains in which neighbors do not report

routes back to the next hop for that very route.

Switchback
In SAAM’s BE traffic management, the process by which a server directs all traffic for a

node pair to be switched back to the primary path.

TCP/IP
Refers to the dominant combination of protocols on the Internet today: Transmission

Control Protocol (TCP) and Internet Protocol (IP). Together, IP provides the
connectivity and TCP the end-to-end flow control.

Transport layer
One of the seven layers in the OSI model for computer communications. It is the layer

that provides methods of flow control, ordering of received data, and acknowledgement
of correctly received data.

Utilization
For a network link, the percent usage as measured by data throughput over throughput

capacity.

 85

THIS PAGE INTENTIONALLY LEFT BLANK

 86

APPENDIX B: LIST OF ACRONYMS

ARPA
Advanced Research Projects Agency

AS
Autonomous system

BE
Best effort

BGP
Border Gateway Protocol

DARPA
Defense Advanced Research Projects Agency

DiffServ
Differentiated service

DoD
Department of Defense

ECMP
Equal cost multipath

IETF
Internet Engineering Task Force

IntServ
Integrated service

IP
Internet Protocol

IPv4
Internet Protocol version 4

IPv6
Internet Protocol version 6

ISO
International Organization for Standardization (not an acronym, but derived from Greek

isos)

 87

ISP
Internet service provider

LSA
Link state advertisment

LSP
Label-switched protocol

MATE
Multi-adaptive traffic engineering

MPLS
Multiprotocol Label Switching

NASA
National Aeronautics and Space Administration

NGI
Next Generation Internet

OSI
Open Systems Interconnect

OSPF
Open Shortest Path First

QoS
Quality of service

RIP
Routing Information Protocol

SAAM
Server and Agent-based Active Network Management

SLA
Service level agreement

TCP
Transmission Control Protocol

TEWG
Traffic Engineering Working Group

ToS
Type of service

 88

XML
Extensible Markup Language

 89

THIS PAGE INTENTIONALLY LEFT BLANK

 90

APPENDIX C: BEST EFFORT MANAGER SOURCE CODE

//25Feb02[Wofford] - Sudafed renamed Congestion Advisory.
//15Feb2002[Wu] Repackaged
//04Feb 2002 [Wofford] Created.

package org.saamnet.saam.server;

import org.saamnet.saam.gui.MAGMAAdminGui;
import org.saamnet.saam.net.*;
import org.saamnet.saam.message.EdgeNotification;
import org.saamnet.saam.message.CongestionAdvisory;
import org.saamnet.saam.message.FlowRoutingTableEntry;
import org.saamnet.saam.agent.router.FlowRoutingTable;

import java.util.Enumeration;
import java.util.Vector;
import java.net.*;

/**
* BestEffortManager (BEM) is the intelligence within the SAAM server that manages
* best effort traffic. It continuously monitors LSA's through one of two modes:
* proactive or reactive. Absent global congestion, BEM communicates with BE
* router agents to handle local congestion. During global congestion, BEM takes
* measures to enforce fairness.
*/

public class BestEffortManager
{

//when a BE path is expired, the period it will remain inactive
public final static long PATH_EXPIRATION_TIME = 1800000;//30 minutes

//references required for operation
private BasePIB myBasePIB;
private Server myServer;

private MAGMAAdminGui gui;

private boolean globalCongestion;//is it occurring?

private long localResolutionTimeout;//allow local resolution to take place
private boolean lrtInitialized;//tracks initialization of localResolutionTimeout
private long timeLastActionTaken;//the last time an active measure was taken
private long timeLastCongestion;//the last time congestion was noted

private long timeLastSwitchback;//the last time a switchback was performed

//statistics used for fairness measures
private double meanLossRate;
private double stdLossRateDev;

//Vectors that store routerID's and interface addresses that
//are registered for best effort traffic BY THEIR STRING REPRESENTATION.
Vector vBestEffortRouters = new Vector();
Vector vBestEffortDestAdds = new Vector();

//used in bePathAdmin()
private static final byte UNEXPIRE_PATHS = 0;

private static final byte GET_PATHS = 1;
private static final byte UPDATE_LOSS_RATE = 2;
private static final byte RECLAIM_PATHS = 7;

//used in beNodePairAdmin()
private static final byte DEPLOY_INITIAL_PATHS = 3;
private static final byte GET_LOSS_RATES = 4;
private static final byte ROB_IF_RICH = 5;
private static final byte GIVE_IF_POOR = 6;

 91

/**
* CONSTRUCTOR
* @param basepib required reference
* @param server required reference
*/

BestEffortManager(BasePIB basepib, Server server)
{

myBasePIB = basepib;
myServer = server;

// Create Gui for PIB display during generation.
gui = new MAGMAAdminGui("Best Effort Manager", server);
server.getControlExec().addMagmaGui(gui);

gui.sendText("Initializing...");

globalCongestion = false;
lrtInitialized = false;

timeLastSwitchback = 0;

gui.sendText("initialized.");
}

/**
* Processes EdgeNotification messages.
* @param edgeNotif the message
*/

protected void processEdgeNotification (EdgeNotification edgeNotif)
{

//initialize localResolutionTimeout variable
if (!lrtInitialized)
{

localResolutionTimeout = 10 * myServer.getAC_cyclePeriod();
lrtInitialized = true;

gui.sendText("\nLocal resolution timeout is " +
localResolutionTimeout + "ms.");

}

int count = 0;//used below to figure out how much information is new

gui.sendText("\nProcessing edge notification.");

IPv6Address interfaceAddress = edgeNotif.getEdgeInterfaceAddress();

//Xie-darpa
BasePIB.InterfaceInfo edgeInterfaceInfo = (BasePIB.InterfaceInfo)

myBasePIB.htInterfaces.get(interfaceAddress.toString());
if (edgeInterfaceInfo == null)
{

gui.sendText("\n PIB is not ready; quit processing the edge notification
message.");

return;
}

int nodeID = edgeInterfaceInfo.getNodeID().intValue();
IPv6Address routerID = (IPv6Address) myBasePIB.htNodeIDtoRouterID.get(new Integer

(nodeID));

//is this a newly discovered edge router?
if (!(vBestEffortRouters.contains(routerID.toString())))
{

gui.sendText("Adding " + routerID.toString() + " to edge routers vector.");
vBestEffortRouters.add(routerID.toString());
count++;

}
//is this a newly discovered destinaton interface?
if (!(vBestEffortDestAdds.contains(interfaceAddress.toString())))
{

 92

gui.sendText("Adding " + interfaceAddress.toString() + " to edge interfaces
vector.");

vBestEffortDestAdds.add(interfaceAddress.toString());
count++;

}

if (count > 0)
{

gui.sendText("Updating best effort topology...");
updateBEtopology();
gui.sendText("Completed updating best effort topology.");

}
else
{

gui.sendText("No new information; best effort topology still
accurate.");

}
}//end processEdgeNotification()

/**
* When global congestion is absent, reactive monitoring takes place.
* @param path the path being observed
* @param lossRate the best effort loss rate on that path
*/

protected void reactiveMonitor(BasePIB.Path path, short lossRate)
{

if (lossRate > myBasePIB.thresholdLossRate)
{

unexpireBEpaths();//see if any expired paths are due for reuse

switch (path.bestEffortTrafficCondition)
{
case BasePIB.Path.GRAY:

break;

//this is a case of new congestion
case BasePIB.Path.GREEN:

int firstNodeID = path.getSrcNodeID();
int lastNodeID = path.getDestNodeID();
if (path == alternatePathForThisNodePair(firstNodeID,

lastNodeID))
{

BasePIB.Path primaryPath =
primaryPathForThisNodePair(firstNodeID, lastNodeID);

if (primaryPath.bestEffortTrafficCondition ==
BasePIB.Path.GREEN)

{
gui.sendText("\nNew congestion on an

alternate path while primary path lossless.");
switchback(firstNodeID, lastNodeID);

}
else
{

path.newCongestion();
}

}
else
{

IPv6Address routerID = (IPv6Address) myBasePIB.htNodeIDtoRouterID.get(new
Integer(firstNodeID));

myServer.sendCongestionAdvisory(routerID, path.getPathID().intValue(),
CongestionAdvisory.YELLOW);

path.newCongestion();
gui.sendText("\nNew congestion on primary path " +

path.getPathID().intValue() + ".");
gui.sendText("Congestion Advisory YELLOW sent to

node " + firstNodeID + ".");
}

 93

break;

//if local resolution has failed, deploy new paths or initiate global congestion
procedures

case BasePIB.Path.YELLOW:
boolean noLocalResolutionPossible = false;
if ((System.currentTimeMillis() - path.timeLastAdvisorySent) >

(localResolutionTimeout * myBasePIB.timeScale))
{

noLocalResolutionPossible = true;
firstNodeID = path.getSrcNodeID();
IPv6Address srcRouterID = (IPv6Address) myBasePIB.htNodeIDtoRouterID.get(new

Integer(firstNodeID));
lastNodeID = ((Integer) (path.getNodeSequence().firstElement())).intValue();
IPv6Address destRouterID = (IPv6Address) myBasePIB.htNodeIDtoRouterID.get(new

Integer(lastNodeID));
BasePIB.Path bePath1 = myBasePIB.routingAlgorithm.findPath(srcRouterID,

destRouterID,
null,

myBasePIB.routingAlgorithm.SHORTEST_WIDEST_LEAST_CONGESTED_PATH);
if (bePath1 != null)
{

gui.sendText("\nCongestion bypass initiated
for nodes " + firstNodeID + " to " + lastNodeID + ".");

noLocalResolutionPossible = false;
Integer bePathID1 = bePath1.getPathID();

Integer bePathID2 = null;
gui.sendText("Deploying path " + bePathID1 +

" as the new primary path.");
if (!bePath1.bCreated)
{

myBasePIB.setupPath(bePath1, bePathID1.intValue(),
FlowRoutingTableEntry.INSTALLED_FOR_BE);

bePath1.bCreated = true;
}

expireBEpaths(firstNodeID, lastNodeID);
myServer.sendCongestionAdvisory(srcRouterID, path.getPathID().intValue(),

CongestionAdvisory.GREEN);
gui.sendText("Congestion Advisory GREEN sent

to node " + firstNodeID + ".");
BasePIB.Path bePath2 = myBasePIB.routingAlgorithm.findPath(srcRouterID,

destRouterID,
bePath1,

myBasePIB.routingAlgorithm.SHORTEST_WIDEST_MOST_DISJOINT_PATH);
if (bePath2 != null)
{

bePathID2 = bePath2.getPathID();
gui.sendText("Deploying path " +

bePathID2 + " as the new alternate path.");
if (!bePath2.bCreated)
{

myBasePIB.setupPath(bePath2, bePathID2.intValue(),
FlowRoutingTableEntry.INSTALLED_FOR_BE);

bePath2.bCreated = true;
}

}
else
{

bePathID2 = bePathID1;
}//end if

sendTableEntries(srcRouterID, destRouterID,
bePathID1.intValue(), bePathID2.intValue());

}//end if
}//end if
if ((noLocalResolutionPossible) && (!globalCongestion))
{

 94

gui.sendText("\nWARNING!\nWARNING!\nWARNING!");
gui.sendText("G L O B A L C O N G E S T I O N");
gui.sendText("Initiating global congestion

resolution procedures.");
initiateGlobalCongestionResolution();

}
break;

//no action necessary; the path's been retired
case BasePIB.Path.RED:

break;

default:
break;

}
}
//has the previous congestion cleared?
else if (path.bestEffortTrafficCondition == BasePIB.Path.YELLOW)
{

int firstNodeID = path.getSrcNodeID();
int lastNodeID = path.getDestNodeID();
BasePIB.Path primaryPath = primaryPathForThisNodePair(firstNodeID,

lastNodeID);
BasePIB.Path alternatePath =

alternatePathForThisNodePair(firstNodeID, lastNodeID);
if (path == primaryPath)
{

if (alternatePath.bestEffortTrafficCondition ==
BasePIB.Path.GREEN)

{
IPv6Address routerID = (IPv6Address)

myBasePIB.htNodeIDtoRouterID.get(new Integer(firstNodeID));
myServer.sendCongestionAdvisory(routerID,

path.getPathID().intValue(), CongestionAdvisory.GREEN);
path.congestionCleared();

gui.sendText("\nCongestion cleared on path " +
path.getPathID().intValue() + ".");

gui.sendText("No more congestion for node pair (" +
firstNodeID + "," + lastNodeID + ").");

gui.sendText("Congestion Advisory GREEN sent to node
" + firstNodeID + ".");

}
else
{

gui.sendText("Congestion has cleared on a primary
path " + path.getPathID() + " while alternate path lossy.");

path.congestionCleared();
switchback(firstNodeID, lastNodeID);

}
}
else
{

path.congestionCleared();
}

}
}//end reactiveMonitor()

/**
* Proactive monitoring takes place during global congestion.
* @param path the path being observed
* @param lossRate the best effort loss rate on that path
*/

protected void proactiveMonitor(BasePIB.Path path, short lossRate)
{

path.bestEffortLossRate = lossRate;//only recorded during active monitoring

long currentTime = System.currentTimeMillis();
if (lossRate > myBasePIB.thresholdLossRate)

 95

{
timeLastCongestion = currentTime;

}
else if ((currentTime - timeLastCongestion) > (localResolutionTimeout *

myBasePIB.timeScale))
{

terminateGlobalCongestionResolution();
reactiveMonitor(path, lossRate);

gui.sendText("\nGlobal congestion resolved!");
gui.sendText("Terminating global coneston resolution procedures.");

return;
}

if ((currentTime - timeLastActionTaken) > (localResolutionTimeout *
myBasePIB.timeScale))

{
gui.sendText("\nAttempting to rob from the rich and give to the

poor.");
gui.sendText("Calculating fairness variables...");
calculateFairnessVariables();
boolean robbed = robFromTheRich();
boolean gave = giveToThePoor();

if (robbed || gave)
{

timeLastActionTaken = currentTime;
}

else
{

timeLastActionTaken = currentTime + (10 *
localResolutionTimeout * myBasePIB.timeScale);

gui.sendText("No action taken.");
}

}
else
{

reactiveMonitor(path, lossRate);
}

}
//end proactiveMonitor()

/**
* Every time a new edge router is discovered, the BE topology is updated
* and new paths are deployed as necessary.
*/

protected void updateBEtopology()
{

//first, reset the topology
gui.sendText("Resetting old paths...");

Enumeration allpaths = myBasePIB.htPaths.elements();
while (allpaths.hasMoreElements())
{

BasePIB.Path thispath = (BasePIB.Path) (allpaths.nextElement());
if (thispath.bBestEffortTraffic)
{

thispath.terminateBestEffortTraffic();
}

}
gui.sendText("reset.");

beNodePairAdmin(DEPLOY_INITIAL_PATHS);

}//end updateBEtopology()

/**
* When one of a BET agent's path fails, the BEM restores redundancy by
* deploying a new path.
* @param pathID the remaining path
*/

 96

private void restoreRedundancy(int pathID)
{

BasePIB.Path deadPath = (BasePIB.Path) (myBasePIB.htPaths.get(new Integer(pathID)));
BasePIB.Path livePath = null;
int srcNodeID = ((BasePIB.Path) (myBasePIB.htPaths.get(new

Integer(pathID)))).getSrcNodeID();
int destNodeID = ((BasePIB.Path) (myBasePIB.htPaths.get(new

Integer(pathID)))).getDestNodeID();
gui.sendText("Affected node pair is (" + srcNodeID + "," + destNodeID +

").");
IPv6Address srcRouterID = (IPv6Address) (myBasePIB.htNodeIDtoRouterID.get(new

Integer(srcNodeID)));
IPv6Address destRouterID = (IPv6Address) (myBasePIB.htNodeIDtoRouterID.get(new

Integer(destNodeID)));

//first, determine the identity of the live path
Vector bePaths = getThisNodePairsBEpaths(srcNodeID, destNodeID);
Enumeration thesePaths = bePaths.elements();
while (thesePaths.hasMoreElements())
{

BasePIB.Path thisPath = (BasePIB.Path) (thesePaths.nextElement());
if (deadPath != thisPath)
{

livePath = thisPath;
}

}

//if this was the only path, then nothing can be done
if (livePath == null)
{

gui.sendText("NO SURVIVING PATH!!!");
return;

}

gui.sendText("Resent surviving path " + livePath.getPathID() + " to reset
the destination.");

BasePIB.Path newRedundantPath = myBasePIB.routingAlgorithm.findPath(srcRouterID,
destRouterID,
livePath,

myBasePIB.routingAlgorithm.SHORTEST_WIDEST_MOST_DISJOINT_PATH);
//now, attempt to find and send a new alternate path
if (newRedundantPath != null)
{

Integer newRedundantPathID = newRedundantPath.getPathID();
if (!newRedundantPath.bCreated)
{

myBasePIB.setupPath(newRedundantPath, newRedundantPathID.intValue(),
FlowRoutingTableEntry.INSTALLED_FOR_BE);

newRedundantPath.bCreated = true;
}

gui.sendText("Sending path " + newRedundantPathID + " as the new
alternate path.");

gui.sendText("Redundancy restored!");
}

else//resend the same path as alternate
{

newRedundantPath = livePath;
gui.sendText("Unable to find a redundant path. Resending the

primary path as alternate.");
}//end if else

sendTableEntries(srcRouterID, destRouterID,
livePath.getPathID().intValue(), newRedundantPath.getPathID().intValue());

}//end restoreRedundancy()

/**

 97

* Tests to see if there are two BE routes currently active for this pair.
* @param srcNodeID the source node
* @param destNodeID the destination node
* @return whether there are
*/

private boolean twoBEroutesActive(int srcNodeID, int destNodeID)
{

if (getThisNodePairsBEpaths(srcNodeID, destNodeID).size() == 2)
{

return true;
}
else
{

return false;
}

}

/**
* Expires best effort paths for this node pair.
* @param srcNodeID
* @param destNodeID
*/

private void expireBEpaths(int srcNodeID, int destNodeID)
{

BasePIB.Path thisPath;

Enumeration thesePaths = getThisNodePairsBEpaths(srcNodeID, destNodeID).elements();
while (thesePaths.hasMoreElements())
{

thisPath = (BasePIB.Path) (thesePaths.nextElement());
if ((thisPath.getSrcNodeID() == srcNodeID) && (thisPath.getDestNodeID() ==

destNodeID))
{

thisPath.expireBEpath();
}

}
}

/**
* Unexpire those BE paths that have been expired
* past the required time.
*/

private void unexpireBEpaths()
{

bePathAdmin(0, 0, UNEXPIRE_PATHS);
}

/**
* Determines the best effort paths for this node pair.
* @param srcNodeID
* @param destNodeID
* @return best effort paths as a Vector
*/

private Vector getThisNodePairsBEpaths(int srcNodeID, int destNodeID)
{

return bePathAdmin(srcNodeID, destNodeID, GET_PATHS);
}

/**
* Determines if global congestion is occurring.
* @return whether it's occurring
*/

protected boolean globalCongestionIsOccurring()
{

return globalCongestion;
}

/**
* Initiates global congestion resolution procedures.

 98

*/
private void initiateGlobalCongestionResolution()
{

globalCongestion = true;

BasePIB.Path thisPath;
BasePIB.PathQoS thisqos;//must be declared here for visibility purposes

//update loss rate parameters for all BE paths
bePathAdmin(0, 0, UPDATE_LOSS_RATE);

gui.sendText("Calculating fairness variables...");
calculateFairnessVariables();

timeLastActionTaken = System.currentTimeMillis();
timeLastCongestion = System.currentTimeMillis();

}

/**
* Calculates fairness variables to base later
* actions upon.
*/

private void calculateFairnessVariables()
{

Vector bepaths = new Vector();
Vector samples = new Vector();
IPv6Address thisRouterID;
int srcNodeID;
int destNodeID;
BasePIB.Path thisbepath;
BasePIB.Path thisPath;
int count = 0;

samples = (Vector) (beNodePairAdmin(GET_LOSS_RATES));

meanLossRate = computeMean(samples);
gui.sendText("Mean loss rate is " + (meanLossRate/100) + "%.");

stdLossRateDev = computeStdDev(samples);
gui.sendText("Loss rate SD is " + (stdLossRateDev/100) + "%.");

}

/**
* Computes loss rate from this node pair assuming all traffic is on alternate path.
* @param srcNodeID
* @param destNodeID
* @return best effort loss rate
*/

private short lossRateFromThisNodePair(int srcNodeID, int destNodeID)
{

long timeDeployed = 0;
short lossRate = 0;
BasePIB.Path thisPath;
Vector bepaths = getThisNodePairsBEpaths(srcNodeID, destNodeID);

if (srcNodeID == destNodeID)
{

return 0;
}

Enumeration thesepaths = bepaths.elements();
while (thesepaths.hasMoreElements())
{

thisPath = (BasePIB.Path) thesepaths.nextElement();
if (thisPath.bBestEffortTraffic && (thisPath.timeBEinitiated > timeDeployed))
{

timeDeployed = thisPath.timeBEinitiated;
lossRate = thisPath.bestEffortLossRate;

}
}

 99

return lossRate;
}

/**
* Terminates global congestion and proactive monitoring.
*/

private void terminateGlobalCongestionResolution()
{

globalCongestion = false;
}

/**
* Fairness measure that will release resources from those pairs
* not experiencing congestion.
* @return success of operation
*/

private boolean robFromTheRich()
{

return ((Boolean) (beNodePairAdmin(ROB_IF_RICH))).booleanValue();

}//end robFromTheRich()

/**
* Fairness measure that will give more resources to those pairs
* experiencing undue congestion
* @return success of operation
*/

private boolean giveToThePoor()
{

reclaimExpiredPaths();

return ((Boolean) (beNodePairAdmin(GIVE_IF_POOR))).booleanValue();

}//end giveToThePoor()

/**
* Reclaims expired paths that have no congestion for reuse.
*/

private void reclaimExpiredPaths()
{

BasePIB.Path thisPath = null;
BasePIB.PathQoS thisPathQoS;

Enumeration allPaths = myBasePIB.htPaths.elements();
while (allPaths.hasMoreElements())
{

thisPath = (BasePIB.Path) (allPaths.nextElement());
if (thisPath.bestEffortTrafficCondition == BasePIB.Path.RED)
{

if (thisPath.bestEffortLossRate < myBasePIB.thresholdLossRate)
{

thisPath.unexpireBEpath();
}

}
}

}

/**
* Resets traffic for a node pair back to the primary path.
* @param srcNodeID
* @param destNodeID
*/

private boolean switchback(int srcNodeID, int destNodeID)
{

if ((System.currentTimeMillis() - timeLastSwitchback) <
(myServer.getAC_cyclePeriod()))

 100

{
return false;

}

BasePIB.Path primaryPath = primaryPathForThisNodePair(srcNodeID, destNodeID);
BasePIB.Path alternatePath = primaryPathForThisNodePair(srcNodeID, destNodeID);

IPv6Address srcRouterID = (IPv6Address) (myBasePIB.htNodeIDtoRouterID.get(new
Integer(srcNodeID)));

IPv6Address destRouterID = (IPv6Address) (myBasePIB.htNodeIDtoRouterID.get(new
Integer(destNodeID)));

sendTableEntries(srcRouterID, destRouterID,
primaryPath.getPathID().intValue(), alternatePath.getPathID().intValue());

myServer.sendCongestionAdvisory(srcRouterID, primaryPath.getPathID().intValue(),
CongestionAdvisory.GREEN);

gui.sendText("Reset traffic split to 100/0 for node pair (" + srcNodeID +
"," + destNodeID + ").");

gui.sendText("Congestion Advisory GREEN sent to node " + srcNodeID + ".");

timeLastSwitchback = System.currentTimeMillis();
return true;

}

/**
* Determines the primary path for this node pair based on deployment time.
* @param srcNodeID
* @param destNodeID
* @return primary path
*/

private BasePIB.Path primaryPathForThisNodePair(int srcNodeID, int destNodeID)
{

BasePIB.Path thisPath;
BasePIB.Path primaryPath = null;
long leastRecentTime = System.currentTimeMillis();

Vector bepaths = getThisNodePairsBEpaths(srcNodeID, destNodeID);

Enumeration enum = bepaths.elements();
while (enum.hasMoreElements())
{

thisPath = (BasePIB.Path) (enum.nextElement());
if (thisPath.timeBEinitiated < leastRecentTime)
{

leastRecentTime = thisPath.timeBEinitiated;
primaryPath = thisPath;

}
}

return primaryPath;
}

/**
* Determines the alternate path for this node pair based on deployment time.
* @param srcNodeID
* @param destNodeID
* @return alternate path
*/

private BasePIB.Path alternatePathForThisNodePair(int srcNodeID, int destNodeID)
{

BasePIB.Path thisPath;
BasePIB.Path alternatePath = null;
long mostRecentTime = 0;

if (!twoBEroutesActive(srcNodeID, destNodeID))
{

return null;
}

 101

Vector bepaths = getThisNodePairsBEpaths(srcNodeID, destNodeID);

Enumeration enum = bepaths.elements();
while (enum.hasMoreElements())
{

thisPath = (BasePIB.Path) (enum.nextElement());
if (thisPath.timeBEinitiated > mostRecentTime)
{

mostRecentTime = thisPath.timeBEinitiated;
alternatePath = thisPath;

}
}

return alternatePath;
}

/**
* Computes the mean of a set of values.
* @param samples the set of values (must cast to Integer)
* @return mean
*/

private double computeMean(Vector samples)
{

int sum = 0;
int count = 0;

Enumeration enum = samples.elements();
while (enum.hasMoreElements())
{

sum += ((Integer) (enum.nextElement())).intValue();
count ++;

}
if (count == 0)
{

return 0;
}
else
{

return sum / count;
}

}

/**
* Computes the standard deviation of a set of values.
* @param samples the set of values (must cast to Integer)
* @return standard deviation
*/

private double computeStdDev(Vector samples)
{

int sum = 0;
int thisElement = 0;
int count = 0;
double mean = computeMean(samples);

Enumeration enum = samples.elements();
while (enum.hasMoreElements())
{

thisElement = ((Integer) (enum.nextElement())).intValue();
sum += (thisElement - mean) * (thisElement - mean);
count++;

}
if (count == 0)
{

return 0;
}
else
{

return java.lang.Math.sqrt((double) (sum / count));

 102

}
}

/**
* Method through which a BE path failure notification is made.
* @param failedPathID ID of the failed path
*/

protected void handleBEpathFailure(int failedPathID)
{

gui.sendText("\nHandling failure of path " + failedPathID + ".");
BasePIB.Path thisPath = (BasePIB.Path) (myBasePIB.htPaths.get(new

Integer(failedPathID)));
int srcNodeID = thisPath.getSrcNodeID();
IPv6Address srcRouterID = (IPv6Address)

(myBasePIB.htNodeIDtoRouterID.get(new Integer(srcNodeID)));
myServer.sendCongestionAdvisory(srcRouterID,

thisPath.getPathID().intValue(), CongestionAdvisory.RED);
gui.sendText("Congestion Advisory RED sent to node " + srcNodeID + ".");
gui.sendText("Attempting to restore redundancy...");

restoreRedundancy(failedPathID);
}

/**
* Whenever BEM generates new paths for a BE node pair, this method is called
* to send the table entries and perform the bookkeeping. Note that entries
* are always sent in pairs. This is to force a 100/0 reset on the BET agent
* end and acceptance of these new entries as active.
* @param srcRouterID the source router ID
* @param destRouterID the destination router ID
* @param primaryPathID the primary path ID
* @param alternatePathID the alternate path ID
*/

private void sendTableEntries(IPv6Address srcRouterID, IPv6Address destRouterID,
int primaryPathID, int alternatePathID)

{
int destNodeID = ((Integer)

(myBasePIB.htRouterIDtoNodeID.get(destRouterID.toString()))).intValue();

try
{

Enumeration interfaces = vBestEffortDestAdds.elements();
while (interfaces.hasMoreElements())
{

IPv6Address thisInterfaceAdd = IPv6Address.getByName((String)
interfaces.nextElement());

if (destNodeID == ((BasePIB.InterfaceInfo)
myBasePIB.htInterfaces.get(thisInterfaceAdd.toString())).getNodeID().intValue())

{
myServer.sendBETUpdate(srcRouterID, thisInterfaceAdd, primaryPathID, 0,

0);
BasePIB.Path primaryPath = (BasePIB.Path)

myBasePIB.htPaths.get(new Integer(primaryPathID));
primaryPath.initiateBestEffortTraffic();
primaryPath.timeBEinitiated -= 1;//other parts of

code require primary path to be older
myServer.sendBETUpdate(srcRouterID, thisInterfaceAdd, alternatePathID, 0,

0);
BasePIB.Path alternatePath = (BasePIB.Path) myBasePIB.htPaths.get(new

Integer(alternatePathID));
alternatePath.initiateBestEffortTraffic();

}
}

}
catch (UnknownHostException uhe)
{

System.out.println("UHE thrown by sendTableEntries() in
BestEffortManager.");

 103

}
}

/**
* All code requiring an all paths iterator is consolidate here.
* @param srcNodeID source node ID
* @param destNodeID destination node ID
* @param action byte code defined at beginning of class
* @return
*/

private Vector bePathAdmin(int srcNodeID, int destNodeID, byte action)
{

Vector bepaths = new Vector();

BasePIB.PathQoS thisPathQoS;

Enumeration allPaths = myBasePIB.htPaths.elements();

while (allPaths.hasMoreElements())
{

BasePIB.Path thisPath = (BasePIB.Path) allPaths.nextElement();

switch (action)
{

case UNEXPIRE_PATHS:
if (thisPath.bestEffortTrafficCondition ==

BasePIB.Path.RED)
{

if ((System.currentTimeMillis() - thisPath.timeConditionRed) >
(PATH_EXPIRATION_TIME * myBasePIB.timeScale))

{
if (thisPath.unexpireBEpath())

{
gui.sendText("\nPath " +

thisPath.getPathID() + " has been unexpired.");
}

}
}

break;

case GET_PATHS:
if ((thisPath.bBestEffortTraffic) &&

(thisPath.getSrcNodeID() == srcNodeID)
&& (thisPath.getDestNodeID() == destNodeID))

{
bepaths.add(thisPath);

}
break;

case UPDATE_LOSS_RATE:
if (thisPath.bBestEffortTraffic)

{
BasePIB.PathQoS thisqos =

thisPath.getPathQoSArray()[BasePIB.BEST_EFFORT];
thisPath.bestEffortLossRate = thisqos.getPacketLossRate();

}
break;

case RECLAIM_PATHS:
if (thisPath.bestEffortTrafficCondition == BasePIB.Path.RED)
{

if (thisPath.bestEffortLossRate < myBasePIB.thresholdLossRate)
{

thisPath.unexpireBEpath();
}

}
break;

default:

 104

break;
}//end switch

}//end while

return bepaths;

}//end bePathAdmin()

/**
* All code requiring node pair iterator is consolidate here.
* @param action byte code defined at beginning of class
* @return
*/

private Object beNodePairAdmin(byte action)
{

boolean bResult = false;
Vector vResult = new Vector();

BasePIB.Path thisPath = null;
BasePIB.Path pathToExpire, primaryPath, alternatePath, reclaimPath;
BasePIB.PathQoS thisPathQoS;

try
{

Enumeration eSources = vBestEffortRouters.elements();
while (eSources.hasMoreElements())
{

IPv6Address srcRouterID = IPv6Address.getByName((String)
eSources.nextElement());

Integer srcNodeID = ((BasePIB.InterfaceInfo)
myBasePIB.htInterfaces.get(srcRouterID.toString())).getNodeID();

Enumeration eDestinations = vBestEffortRouters.elements();
while (eDestinations.hasMoreElements())
{

IPv6Address interfaceAddress = IPv6Address.getByName((String)
eDestinations.nextElement());

Integer destNodeID = ((BasePIB.InterfaceInfo)
myBasePIB.htInterfaces.get(interfaceAddress.toString())).getNodeID();

IPv6Address destRouterID = (IPv6Address)
myBasePIB.htNodeIDtoRouterID.get(destNodeID);

switch (action)
{

case DEPLOY_INITIAL_PATHS:
//SHORTEST WIDEST PATH is used for the primary path
BasePIB.Path bePath1 =

myBasePIB.routingAlgorithm.findPath(srcRouterID,

destRouterID,

null,

myBasePIB.routingAlgorithm.SHORTEST_WIDEST_PATH);
if (bePath1 != null)
{

Integer bePathID1 = bePath1.getPathID();
if (!bePath1.bCreated)
{

myBasePIB.setupPath(bePath1, bePathID1.intValue(),
FlowRoutingTableEntry.INSTALLED_FOR_BE);

bePath1.bCreated = true;
}

gui.sendText("Path " +
bePathID1.intValue() + " deployed as primary for (" + srcNodeID.intValue() + "," +
destNodeID.intValue() + ").");

//SHORTEST WIDEST MOST DISJOINT PATH is used for the
alternate path

 105

BasePIB.Path bePath2 =
myBasePIB.routingAlgorithm.findPath(srcRouterID,

destRouterID,

bePath1,

myBasePIB.routingAlgorithm.SHORTEST_WIDEST_MOST_DISJOINT_PATH);
if (bePath2 != null)
{

Integer bePathID2 = bePath2.getPathID();
if (!bePath2.bCreated)
{

myBasePIB.setupPath(bePath2, bePathID2.intValue(),
FlowRoutingTableEntry.INSTALLED_FOR_BE);

bePath2.bCreated = true;
}

gui.sendText("Path " +
bePathID2.intValue() + " deployed as alternate.");

}
else
{

bePath2 = bePath1;
gui.sendText("No

alternate path available.");
}

sendTableEntries(srcRouterID,
destRouterID, bePath1.getPathID().intValue(), bePath2.getPathID().intValue());

}//end if
break;

case GET_LOSS_RATES:
if (srcNodeID != destNodeID)
{

vResult.add(new Integer((int)
(lossRateFromThisNodePair(srcNodeID.intValue(), destNodeID.intValue()))));

}
break;

case ROB_IF_RICH:
int leastBandwidth, thisBandwidth;
if

((lossRateFromThisNodePair(srcNodeID.intValue(), destNodeID.intValue()) < (meanLossRate -
stdLossRateDev)) &&

twoBEroutesActive(srcNodeID.intValue(),
destNodeID.intValue()))

{
leastBandwidth = 2000000000;//a large number
Vector bepaths =

getThisNodePairsBEpaths(srcNodeID.intValue(), destNodeID.intValue());
Enumeration enum = bepaths.elements();
while (enum.hasMoreElements())
{

thisPath = (BasePIB.Path) (enum.nextElement());
thisPathQoS =

thisPath.getPathQoSArray()[BasePIB.BEST_EFFORT];
thisBandwidth = thisPathQoS.getAvailableBandwidth();
if (thisBandwidth < leastBandwidth)
{

leastBandwidth = thisBandwidth;
pathToExpire = thisPath;

}
}
srcRouterID = (IPv6Address)

(myBasePIB.htNodeIDtoRouterID.get(srcNodeID));
myServer.sendCongestionAdvisory(srcRouterID,

thisPath.getPathID().intValue(), CongestionAdvisory.RED);
thisPath.expireBEpath();

bResult = true;

 106

gui.sendText("Deactivated
path " + thisPath.getPathID() + " for node pair (" + srcNodeID + "," + destNodeID +
").");

gui.sendText("Robbed from the
rich.");

}//end if
break;

case GIVE_IF_POOR:
int currentBandwidth,

switchbackBandwidth, reclaimableBandwidth;
if

((lossRateFromThisNodePair(srcNodeID.intValue(), destNodeID.intValue()) > (meanLossRate +
stdLossRateDev)) &&

twoBEroutesActive(srcNodeID.intValue(),
destNodeID.intValue()))

{
primaryPath =

primaryPathForThisNodePair(srcNodeID.intValue(), destNodeID.intValue());
alternatePath =

alternatePathForThisNodePair(srcNodeID.intValue(), destNodeID.intValue());
srcRouterID = (IPv6Address)

(myBasePIB.htNodeIDtoRouterID.get(srcNodeID));
destRouterID = (IPv6Address)

(myBasePIB.htNodeIDtoRouterID.get(destNodeID));
reclaimPath =

myBasePIB.routingAlgorithm.findPath(srcRouterID,

destRouterID,
null,

myBasePIB.routingAlgorithm.SHORTEST_WIDEST_PATH);
if (twoBEroutesActive(srcNodeID.intValue(),

destNodeID.intValue()))
{

thisPathQoS =
primaryPath.getPathQoSArray()[BasePIB.BEST_EFFORT];

switchbackBandwidth =
thisPathQoS.getAvailableBandwidth();

thisPathQoS =
alternatePath.getPathQoSArray()[BasePIB.BEST_EFFORT];

currentBandwidth = thisPathQoS.getAvailableBandwidth();
}
else
{

thisPathQoS =
primaryPath.getPathQoSArray()[BasePIB.BEST_EFFORT];

currentBandwidth = thisPathQoS.getAvailableBandwidth();
switchbackBandwidth = 0;

}
if (reclaimPath != null)
{

thisPathQoS =
reclaimPath.getPathQoSArray()[BasePIB.BEST_EFFORT];

reclaimableBandwidth =
thisPathQoS.getAvailableBandwidth();

}
else
{

reclaimableBandwidth = 0;
}
if ((switchbackBandwidth > currentBandwidth) &&

(switchbackBandwidth >= reclaimableBandwidth))
{

bResult = switchback(srcNodeID.intValue(),
destNodeID.intValue());

gui.sendText("Gave to
the poor.");

}

 107

else if (reclaimableBandwidth > currentBandwidth)
{

Vector bepaths =
getThisNodePairsBEpaths(srcNodeID.intValue(), destNodeID.intValue());

Enumeration enum = bepaths.elements();
while (enum.hasMoreElements())
{

thisPath = (BasePIB.Path) (enum.nextElement());
thisPath.terminateBestEffortTraffic();

}

myServer.sendCongestionAdvisory(srcRouterID,
reclaimPath.getPathID().intValue(), CongestionAdvisory.GREEN);

gui.sendText("Deployed
fatter path " + reclaimPath + " for node pair (" + srcNodeID + "," + destNodeID + ").");

BasePIB.Path bePath2 =
myBasePIB.routingAlgorithm.findPath(srcRouterID,

destRouterID,

reclaimPath,

myBasePIB.routingAlgorithm.SHORTEST_WIDEST_MOST_DISJOINT_PATH);
if (bePath2 != null)
{

Integer bePathID2 = bePath2.getPathID();
if (!bePath2.bCreated)
{

myBasePIB.setupPath(bePath2, bePathID2.intValue(),
FlowRoutingTableEntry.INSTALLED_FOR_BE);

bePath2.bCreated = true;
}

gui.sendText("Deployed new alternate path " + bePathID2 + " for node pair (" +
srcNodeID + "," + destNodeID + ").");

}
else
{

bePath2 =
reclaimPath;

}//end if

sendTableEntries(srcRouterID, destRouterID, reclaimPath.getPathID().intValue(),
bePath2.getPathID().intValue());

bResult = true;
gui.sendText("Gave to

the poor.");
}//end if

}//end if
break;

default:
break;

}//end switch
}//end while

}//end while
}
catch (UnknownHostException uhe)
{

System.out.println("UHE thrown by beNodePairAdmin() in
BestEffortManager.");

}

switch (action)
{
case GET_LOSS_RATES:

return vResult;

case ROB_IF_RICH:

 108

return new Boolean(bResult);

case GIVE_IF_POOR:
return new Boolean(bResult);

default:
return null;

}

}//end beNodePairAdmin()

}

 109

THIS PAGE INTENTIONALLY LEFT BLANK

 110

APPENDIX D: BEST EFFORT TABLE AGENT SOURCE CODE

//25Feb02[Wofford] - Sudafed renamed Congestion Advisory.
//31Jan02[Wu] - repackaged
//09Oct01[Wofford] - created

//[cw]

package org.saamnet.saam.agent.router;

import java.util.*;
import java.net.InetAddress;
import java.net.UnknownHostException;

import org.saamnet.saam.control.*;
import org.saamnet.saam.agent.*;
import org.saamnet.saam.router.*;
import org.saamnet.saam.net.*;
import org.saamnet.saam.event.*;
import org.saamnet.saam.message.*;
import org.saamnet.saam.gui.*;
//import com.objectspace.jgl.HashMap;//[cw]may be overkill for this class

/**
* The BestEffortTable is a lookup table the router uses to associate
* unlabeled BE traffic destined for a particular address to a path
* that is installed in the FlowRoutingTable. It is "smarter" than a
* FlowRoutingTable, though, in that it will actually make decisions
* independent of examining a single entry.
*/

public class BestEffortTable extends Hashtable implements TableResidentAgent,
MessageProcessor

{

//the maximum number of routes to split to a single destination
public final static int MAX_ROUTES = 2;

private TableGui gui;

private Vector columnLabels = new Vector();

private ControlExecutive controlExec;

private byte[] myMessages = //-crcp generic message registration
{

Message.BEST_EFFORT_TBL_ENTRY,
Message.CONGESTION_ADVISORY

};

//hashtable of TrafficDestination objects keyed by destination IP address
private Hashtable destinationList = new Hashtable();

//The BestEffortTable acts autonomously at various intervals depending
//on most recent information in Congeston Advisory messages for a server. If a
//TrafficDestination is congested, it will "redirect" traffic
//periodically to an alternate route. If the congestion has cleared,
//then it will gradually revert until all traffic is carried by the
//primary route. These constants allow for tuning performance.
//Philosophically, when you have congestion, you want to act QUICKLY.
//When the congestion clears, gradually revert to the primary route.
//The primary route is often more desirable AND it's best to have
//maximum room available on the alternate route to handles extra traffic.
private int timeScale;

private final static int REDIRECT_INTERVAL = 200;//should always be equal to AC_Cycle
time

private final static int REVERT_INTERVAL = 1800000;//30 minutes

 111

/**
* Constructs a BestEffortTable.
*/

public BestEffortTable()
{

//super(true);
}

/**
* A TrafficDestination is a data structure used by the BestEffortTable to

* track information on a per-destination basis. Notably, it holds two
* key arrays. Array currentSplit holds the split in percentage over the
* number of routes being used. Array routeInstalled tracks whether those
* routes have been received from the server and installed by BestEffortTable.
* It is twice as big in order to hold a full complement of spare routes.

*/
public static class TrafficDestination
{

public IPv6Address destination;
public int[] currentSplit = new int[MAX_ROUTES];//the traffic split

public boolean[] routeInstalled = new boolean[2 * MAX_ROUTES];
public int primaryRoute;//array index pointer for primary route
public int nextEntry;//array index pointer for where to install next route

public byte trafficCondition;
public boolean isUsingAlternateRoute;

public long timeLastRedirect;
public long timeLastRevert;

public TrafficDestination(IPv6Address address)
{

destination = address;
primaryRoute = 0;
nextEntry = 0;
currentSplit[primaryRoute] = 100;
trafficCondition = CongestionAdvisory.GREEN;

isUsingAlternateRoute = false;
timeLastRedirect = 0;
}
}

/**
* Required install method of the ResidentAgent interface.
*
* @param controlExec The ControlExecutive on the router this agent
* is being installed on.
* @param String instanceName
* @param String [] parameters - array of parameters for this agent
*/

public void install(ControlExecutive controlExec,
String instanceName,
String [] parameters)

{
columnLabels.add("Dest IPv6 Address");
columnLabels.add("Map to Path");
columnLabels.add("Traffic Split");
int[] columnWidths = {210, 120, 120};
gui = new TableGui(controlExec.mainGui.getContentPanel(), instanceName, columnLabels,

columnWidths);
controlExec.addTableGui(gui); //-crcy
this.controlExec = controlExec;
controlExec.registerMessageProcessor(myMessages, this);

timeScale = controlExec.getTimeScale();
}

/**
* Required uninstall method of the ResidentAgent interface.

 112

*/
public void uninstall(){

clear();
}

/**
* The communication method through which ResidentAgent talks.
* @param message a BETE with only the destination field
* @return a BETE with a path ID filled in to map to
*/

public Message query (Message message)
{

IPv6Address destAddr = ((BestEffortTableEntry) message).getDestAddr();
int bucketMap = ((BestEffortTableEntry) message).getSplit();
BestEffortTableEntry result = getBestEffortTableEntry(destAddr, bucketMap);
return result;

}

/**
* Retrieves the BET entry for a destination address and bucket map.
* @param destAddr
* @param bucketMap
* @return the associated BETE
*/

public BestEffortTableEntry getBestEffortTableEntry(IPv6Address destAddr, int
bucketMap)

{
TrafficDestination trafDest = (TrafficDestination)

destinationList.get(destAddr.toString());
//if BE traffic is congested to this destination, redirect traffic to alternate path
if (trafDest != null) //may be no such entry yet; see RoutingAlogrithm

{
if ((trafDest.trafficCondition == CongestionAdvisory.YELLOW) &&

((System.currentTimeMillis() - trafDest.timeLastRedirect) >
(REDIRECT_INTERVAL * timeScale)))

{
redirect(trafDest);

}
if ((trafDest.isUsingAlternateRoute) && (trafDest.trafficCondition

== CongestionAdvisory.GREEN) &&
((System.currentTimeMillis() - trafDest.timeLastRevert) >

(REVERT_INTERVAL * timeScale)))
{

revert(trafDest);
}

int serialNo = trafDest.primaryRoute;
int split = 0;//0%
int percentile = bucketMap * 10 + 10;//i.e. f(0)=10%...f(9)=100%

for (int counter = 0; counter < MAX_ROUTES; counter++)
{

split += trafDest.currentSplit[counter];
if (percentile <= split)
{

serialNo = (serialNo + counter) % (MAX_ROUTES * 2);
break;

}
}

String key = destAddr.toString() + serialNo;
BestEffortTableEntry result = (BestEffortTableEntry) get(key);
return result;//expect null if no entry; see RoutingAlgorithm

}
else
{

return null;
}

}

 113

/**
* Returns true if the BET contains an entry indexed by destination
* address andfalse otherwise.
* @param destAddr, a particular destination IP address
* @return whether or not the BET contains an entry indexed by the destination address
*/
public boolean hasEntry(IPv6Address destAddr)
{

if (destinationList.get(destAddr.toString()) != null)
{

return true;
}
else
{

return false;
}

}

/**
* Returns the entire contents of this BestEffortTable or null
* if this BestEffortTable is empty.
* @return A Vector of all entries currently
* in the flow routing table.
*/
public Vector getTable()
{

if (isEmpty())
{

return null;
}

Vector table = new Vector(size());
Enumeration e = elements();
while (e.hasMoreElements())
{

Vector oneRow = new Vector();
BestEffortTableEntry betentry = (BestEffortTableEntry) e.nextElement();

oneRow.add("" + betentry.getDestAddr());
oneRow.add("" + betentry.getPathMap());
oneRow.add("" + betentry.getSplit());

table.add(oneRow);
}

return table;

}//End getTable()

/**
* Required method for ResidentAgents for state transfer
* @param replacement the ResidentAgent replacement
*/

public void transferState (ResidentAgent replacement)
{

for (Enumeration e = elements(); e.hasMoreElements();)
{

replacement.receiveState((BestEffortTableEntry) e.nextElement());
}

}

/**
* Required method for ResidentAgents to receive state.
* @param message a BETE (one at a time from transferState())
*/

public void receiveState (Message message){

 114

add((BestEffortTableEntry) message);
}

/**
* Required method for a TableResidentAgent.
* Not used by BET.
* @param res FlowResponse
*/

public void receiveFlowResponse (FlowResponse res) { }

/**
* BestEffortTable process two types of messages, BEST_EFFORT_TBL_ENTRY and

CONGESTION_ADVISORY.
* For BEST_EFFORT_TBL_ENTRY, it adds the entry and makes a new TrafficDestination

* if it does not have this destination on file. For CONGESTION_ADVISORY, it updates
the

* congestion condition for the TrafficDestination using that pathID.
* @param message CongestionAdvisory from BestEffortManager on server

*/
public void processMessage (Message message)
{

switch (message.getBytes()[0])
{

case Message.BEST_EFFORT_TBL_ENTRY:
BestEffortTableEntry betentry = null; //-crcp
try //-crcp
{

betentry = new BestEffortTableEntry(message.getBytes()); //-crcp
generic way

}
catch(UnknownHostException uhe)
{

System.out.println("BestEffortTable Error: can't create local BETE."
+ uhe);

}
//check to see if this is a known destination

if (destinationList.containsKey(betentry.getDestAddr().toString()))
{

TrafficDestination trafDest = (TrafficDestination)
destinationList.get(betentry.getDestAddr().toString());

betentry.serialNo = trafDest.nextEntry;
//check to see if a new complement of routes is being received
//if so, reset previous splits to 0 and mark next route as primary

boolean resetRoutes = (trafDest.nextEntry -
trafDest.primaryRoute == MAX_ROUTES)

|| (trafDest.primaryRoute -
trafDest.nextEntry == MAX_ROUTES);

if (resetRoutes)
{

for (int i = 0; i < MAX_ROUTES; i++)
{

int index = (trafDest.primaryRoute +
i) % (2 * MAX_ROUTES);

String key =
betentry.getDestAddr().toString() + index;

BestEffortTableEntry zeroedentry =
(BestEffortTableEntry) get(key);

zeroedentry.split = 0;
trafDest.currentSplit[i] = 0;

}
betentry.split = 100;
trafDest.currentSplit[0] = 100;
trafDest.primaryRoute =

(trafDest.primaryRoute + MAX_ROUTES) % (2 * MAX_ROUTES);
trafDest.isUsingAlternateRoute = false;

}
else //this is not a new primary route

 115

{
betentry.split = 0;

}
add(betentry);
trafDest.routeInstalled[trafDest.nextEntry] = true;
trafDest.nextEntry = (trafDest.nextEntry + 1) % (2 * MAX_ROUTES);

}
else //need to start tracking this new destination
{

TrafficDestination trafDest = new
TrafficDestination(betentry.getDestAddr());

destinationList.put(betentry.getDestAddr().toString(), trafDest);
betentry.serialNo = trafDest.nextEntry;
betentry.split = 100;
add(betentry);
trafDest.routeInstalled[trafDest.nextEntry] = true;
trafDest.nextEntry = (trafDest.nextEntry + 1) % (2 * MAX_ROUTES);

}
//this is the server's way of granting edge router permission

controlExec.acceptEdgeTraffic();
break;

case Message.CONGESTION_ADVISORY:
CongestionAdvisory pill = new CongestionAdvisory(message.getBytes());
//determine affected path
int affectedPathID = pill.getPathID();

Enumeration e = elements();
while (e.hasMoreElements())
{

BestEffortTableEntry betentry1 = (BestEffortTableEntry)
e.nextElement();

if (betentry1.getPathMap() == affectedPathID)
{

TrafficDestination trafDest = (TrafficDestination)

destinationList.get(betentry1.getDestAddr().toString());
//update the traffic condition
trafDest.trafficCondition = pill.pathCondition();
//if RED, then route all traffic to unaffected path

if (pill.pathCondition() ==
CongestionAdvisory.RED)

{
int unaffectedSerialNo;
int serialNo =

betentry1.getSerialNo();
if (serialNo ==

trafDest.primaryRoute)
{

unaffectedSerialNo =
(serialNo + 1) % (2 * MAX_ROUTES);

}
else
{

unaffectedSerialNo =
(serialNo - 1) % (2 * MAX_ROUTES);

}
String unaffectedKey =

trafDest.destination.toString() + unaffectedSerialNo;
BestEffortTableEntry unaffectedEntry

= (BestEffortTableEntry) get(unaffectedKey);

betentry1.setPathMap(unaffectedEntry.getPathMap());
gui.fillTable(getTable());

}
}

}
break;

default:

 116

break;
}

}//End processMessage()

/**
* Redirects one bucket of traffic from the primary to alternate path.
* @param trafDest the traffic destination
* @return success of operation
*/

private boolean redirect(TrafficDestination trafDest)
{

int primaryRoute = trafDest.primaryRoute;
int alternateRoute = (trafDest.primaryRoute + 1) % (2 * MAX_ROUTES);

if ((trafDest.currentSplit[0] >= 10) &&
(trafDest.routeInstalled[alternateRoute]))

{
String primaryKey = trafDest.destination.toString() + primaryRoute;

BestEffortTableEntry primaryEntry = (BestEffortTableEntry) get(primaryKey);
primaryEntry.setSplit(primaryEntry.getSplit() - 10);
trafDest.currentSplit[0] -= 10;

String alternateKey = trafDest.destination.toString() +
alternateRoute;

BestEffortTableEntry alternateEntry = (BestEffortTableEntry)
get(alternateKey);

alternateEntry.setSplit(alternateEntry.getSplit() + 10);
trafDest.currentSplit[1] += 10;

gui.fillTable(getTable());

trafDest.isUsingAlternateRoute = true;

trafDest.timeLastRedirect = System.currentTimeMillis();

return true;
}
else
{

trafDest.timeLastRedirect = System.currentTimeMillis();

return false;
}

}

/**
* Reverts one bucket of traffic back to the primary path.
* @param trafDest the traffic destination
* @return success of operation
*/

private boolean revert(TrafficDestination trafDest)
{

int primaryRoute = trafDest.primaryRoute;
int alternateRoute = (trafDest.primaryRoute + 1) % (2 * MAX_ROUTES);

if (trafDest.currentSplit[0] <= 90)
{

String primaryKey = trafDest.destination.toString() + primaryRoute;
BestEffortTableEntry primaryEntry = (BestEffortTableEntry) get(primaryKey);

primaryEntry.setSplit(primaryEntry.getSplit() + 10);
trafDest.currentSplit[0] += 10;

String alternateKey = trafDest.destination.toString() +
alternateRoute;

BestEffortTableEntry alternateEntry = (BestEffortTableEntry)
get(alternateKey);

alternateEntry.setSplit(alternateEntry.getSplit() - 10);

 117

trafDest.currentSplit[1] -= 10;

gui.fillTable(getTable());

if (trafDest.currentSplit[1] == 0)
{

trafDest.isUsingAlternateRoute = false;
}

trafDest.timeLastRevert = System.currentTimeMillis();

return true;
}
else
{

trafDest.timeLastRedirect = System.currentTimeMillis();

return false;
}

}

/**
* Required method for MessageProcessors.
* @return message types processed
*/

public byte[] getMessageTypes()
{

return myMessages;
}

/**
* Required method for SaamListeners.
* @param se event received
*/

public void receiveEvent(SaamEvent se){ }

/**
* If a BestEffortTableEntry has already been constructed,
* this method allows it to be entered into the table.
* @param entry The BestEffortTableEntry to be entered.
*/

public synchronized void add (BestEffortTableEntry betentry)
{

String key = betentry.getDestAddr().toString() + betentry.getSerialNo();
put(key, betentry);
gui.fillTable(getTable());

}

/**
* Returns the contents of the best effort table
* in the form of a String (useful for displaying the table).
* @return A String representation of the contents of the
* entire table.
*/

public String toString()
{

String result = "Best Effort Table\n";

Enumeration enum = elements();
while (enum.hasMoreElements())
{

BestEffortTableEntry nextEntry = (BestEffortTableEntry) (enum.nextElement());
result += nextEntry.toString() + "\n";

}

return result;
}//toString()

 118

}//end BestEffortTable

 119

THIS PAGE INTENTIONALLY LEFT BLANK

 120

APPENDIX E: CONGESTION ADVISORY MESSAGE SOURCE
CODE

//25Feb02[Wofford] - Sudafed renamed Congestion Advisory.
//31Jan02[Wu] - repackaged
//29Jan02[Wofford] - Rewrote to conform to standard format (like DCM)
//07Dec01[Wofford] - Created.

package org.saamnet.saam.message;

import java.net.UnknownHostException;
import java.util.*;
import org.saamnet.saam.net.*;
import org.saamnet.saam.util.*;

/**
* CongestionAdvisory is how a server tells a router whether or not it is
* experiencing congestion of its best effort traffic. It is
* also how it tells the router that congestion is relieved.
*/

public class CongestionAdvisory extends Message{

public static final byte GREEN = 0;
public static final byte YELLOW = 1;
public static final byte RED = 2;

//total length (in bytes) of fields below
private final static short CADV_LENGTH = (short) (4 + 1);

int pathID;
byte pathCondition;

public CongestionAdvisory(int pathID, byte pathCondition)
{

super(Message.CONGESTION_ADVISORY);
this.pathID = pathID;
this.pathCondition = pathCondition;

bytes = Array.concat(type, PrimitiveConversions.getBytes(CADV_LENGTH));
bytes = Array.concat(bytes, PrimitiveConversions.getBytes(pathID));
bytes = Array.concat(bytes, pathCondition);

}

public CongestionAdvisory (byte[] bytes)
{

super(Message.CONGESTION_ADVISORY);
this.bytes = bytes;

int index = 3;//skip type and length fields

pathID = PrimitiveConversions.getInt(Array.getSubArray(bytes, index, index +4));
index += 4;

pathCondition = bytes[index];

}//end byte array based Constructor

public int getPathID()
{

return pathID;
}

public byte pathCondition()
{

return pathCondition;
}

 121

public String toString()
{

String advisory = "Congestion Advisory Message:" +
"\n Path ID = " + pathID +
"; Traffic condition = ";

switch (pathCondition)
{
case GREEN:

advisory += "GREEN";
break;

case YELLOW:
advisory += "YELLOW";
break;

case RED:
advisory += "RED";
break;

default:
break;

}

return advisory;
}

}

 122

APPENDIX F: MODIFICATIONS TO ROUTING ALGORITHM
SOURCE CODE

/**
* Forwards the outbound packet to the appropriate Interface
* @param packet A byte array representation of the outbound packet.
*/
public void forwardPacket(IPv6Packet packet)
{

int MIN_APP_PATH_ID = 65; // mirroring definition in server/BasePIB.java

byte INT_SERV = 0x01; // last two bits of ToS field
byte DIFF_SERV = 0x02; //[cw] used to say 0x00 which is not cons. w/ FlowGenerator
byte BEST_EFF = 0x00; //[cw] BE packets will have default ToS setting

IPv6Header v6Header = packet.getHeader();
IPv6Address dest = v6Header.getDest();

byte ToS = (byte) (v6Header.getToS() & 0x03); // obtain the last two bits

int flowLabel = v6Header.getFlowLabel();
int pathID = flowLabel & 0x00000FFF; // obtain the last 12 bits.

byte sl;
if (ToS == INT_SERV)
{

if (pathID < MIN_APP_PATH_ID) // Path IDs 0-64 are reserved for signaling channels.
sl = Interface.CTRL_TRAFFIC_SL;

else
sl = Interface.INT_SERV_SL;

}
else if (ToS == DIFF_SERV)
{//[cw] changed from " =Interface.BEST_EFFORT_SL" below

sl = Interface.DIFF_SERV_SL; // [GX] Need to handle DS later; check PHB bits.
}
else if (ToS == BEST_EFF) //[cw] added branch for BE traffic
{

sl = Interface.BEST_EFFORT_SL;
}
else
{

gui.sendText("\nUnknown ToS! Quit forwarding this packet.");
return;

}

//[cw] This is the control structure that handles best effort traffic.
Basically, for an

//[cw] inbound BE packet to be routed, this router must be an edge router AND have an
entry

//[cw] in its BE table for that destination IP address. If this is not the case,
than the

//[cw] router makes an edge notification and drops packets to that address until it
gets an

//[cw] entry. It will try again to notify the server if 20 seconds elapse with no
table

//[cw] entry. If this router is a protected core router (forbidden to handle edge
traffic),

//[cw] it will always drop BE packets. Note that after being routed by this router,
they

//[cw] are assigned to a path and essentially partially encapsulated. That is, the
logic

//[cw] below only applies to "naked packets", those without a pathID. After they are
assigned

//[cw] a pathID at the ingress edge router, they are routed solely on that. Their
ToS bits

 123

//[cw] still indicate BE, but this now only matters for bandwidth provision and
queueing.

if (ToS == BEST_EFF && (pathID == 0))
{

if (controlExec.isEdgeRouter())
{
int bucketMap = java.lang.Math.abs(v6Header.getSource().toString().hashCode()) %

10;
Message message = (Message) (new BestEffortTableEntry(dest, 0, 0, bucketMap));
BestEffortTableEntry betentry = (BestEffortTableEntry)

bestEffortTable.query(message);
if (betentry != null)
{

pathID = betentry.getPathMap();
IPv6Header newHdr = new IPv6Header(ToS, pathID, v6Header.getSource(), dest);

IPv6Packet newPkt = new IPv6Packet(newHdr, packet.getUDPHeader(),
packet.getPayload());

packet = newPkt;
}
else
{

//if it hasn't been at least 20s, give the server some time to
//update the BE topology and deploy routes; drop packets until then
if ((System.currentTimeMillis() - timeLastEdgeNotifSent) > (20000 *

controlExec.getTimeScale()))
{

controlExec.sendEdgeNotification(dest);
timeLastEdgeNotifSent = System.currentTimeMillis();

}
requeueBestEffPkt(packet);

}
}
else
{
//if it hasn't been at least 20s, give the server some to
//update the BE topology and deploy routes; drop packets until then
if (!controlExec.isProtectedCore() &&

((System.currentTimeMillis() - timeLastEdgeNotifSent) > (20000 *
controlExec.getTimeScale())))

{
controlExec.sendEdgeNotification(controlExec.getRouterId());

controlExec.sendEdgeNotification(dest);
timeLastEdgeNotifSent = System.currentTimeMillis();
requeueBestEffPkt(packet);

}
else if (!controlExec.isProtectedCore())
{

requeueBestEffPkt(packet);
}

}
}//[cw] end control structure for best effort traffic

IPv6Address nextHop = null;
Interface outboundInterface = null;
Message message = (Message) (new FlowRoutingTableEntry(pathID));

if (pathID >= MIN_APP_PATH_ID)
{ // This is an application flow

//[cw] changed "ent" to "frtentry" inside these brackets
FlowRoutingTableEntry frtentry = (FlowRoutingTableEntry)

flowRoutingTable.query(message);
if (frtentry != null)
{

nextHop = frtentry.getNextHop();
outboundInterface = (Interface) interfaces.elementAt(frtentry.getInterfaceNum());

}
else
{

gui.sendText("\nNo routing entry for this application packet! (pathID = " +

 124

pathID + "). Quit forwarding this packet.");
return;

}
}
else if (packet.queryPossibleMessageType() == Message.DCM)
{ // For DCMs, use destination in IPv6 header; Why not just broadcast?

nextHop = dest;
outboundInterface = Interface.getMatchInterface(interfaces, nextHop);

gui.sendText("Routing a DCM packet (pathID = " + pathID +
") nextHop = " + nextHop.toString());

}
else if (pathID % 2 == 1)
{ //[cw] changed "entry" to "stentry" in this scope

// Need to check RBCCTs for router-bound signaling packets
// Router-bound signaling packets carry server root path IDs

// First find the right server entry
ServerTable table = controlExec.getServerTable();
//[cw] changed "entry" to "stentry" in this scope
ServerTableEntry stentry = table.getEntryByRootPathId(pathID);

if (stentry == null)
{

gui.sendText("\nNo server entry exists with matching root path id! (pathId = " +
pathID + "). Quit forwarding this packet.");

return;

}

// Then look up the RBCCT for that server to find next hop
RouterBoundCtrlChTable rbccTable = stentry.getRouterBoundCtrlChTable();
RouterBoundCtrlChTableEntry rbccEntry = rbccTable.get(dest);

if (rbccEntry != null)
{

nextHop = rbccEntry.getNextHop();
outboundInterface = Interface.getMatchInterface(interfaces, nextHop);

}
else
{

gui.sendText("\nNo routing entry for this router-bound signaling packet! (pathID
= " +

pathID + "). Quit forwarding this packet.");
return;

}
}
else
{ //[cw] changed "ent" to "frtentry" in this scope

FlowRoutingTableEntry frtentry = (FlowRoutingTableEntry)
flowRoutingTable.query(message);

if (frtentry != null)
{

nextHop = frtentry.getNextHop();
outboundInterface = (Interface) interfaces.elementAt(frtentry.getInterfaceNum());

}
else
{

gui.sendText("\nNo routing entry for this server-bound signaling packet! (pathID
= " +

pathID + "). Quit forwarding this packet.");
return;

}
}

//Now use ARP to determine the MAC address of the next hop.
//It would be better if this ARP cache lookup is done by the
//Interface layer. This is a temporary solution.

 125

message = (Message) (new ARPCacheEntry(nextHop));
//[cw] changed "entry" to "arpcentry" in this scope
ARPCacheEntry arpcentry = (ARPCacheEntry) arpCache.query(message);

try
{

byte nextMAC = arpcentry.getNextMAC();
gui.sendText(" nextMAC: " + nextMAC);

if(v6Header.getSource().toString().equals(IPv6Address.DEFAULT_HOST))
{

v6Header.setSource(outboundInterface.getInfo().getIPv6());
packet.setHeader(v6Header);

}

gui.sendText(" Source: " + v6Header.getSource());
gui.sendText(" Dest: " + v6Header.getDest());
gui.sendText(" Forwarding packet to: " + outboundInterface);

byte[] outboundPacket = Array.concat(nextMAC,packet.getBytes());

//send a SaamEvent to the appropriate outbound interface.
//This SaamEvent contains the service level among other things.
ProtocolStackEvent event = new ProtocolStackEvent(

toString(),
this,
ProtocolStackEvent.getFromRoutingAlgorithmToInterfaceChannel(

interfaces.indexOf(outboundInterface)),
outboundPacket,
sl,
nextHop);

try
{

controlExec.talk(event);
}
catch (ChannelException tde)
{

gui.sendText(tde.toString());
}

}
catch (NullPointerException npe)
{

gui.sendText("Next Hop is not in the ARPCache");
gui.sendText("Packet Dropped\n");

}

}//end forwardPacket()

//[cw]
/**
* Requeues packets not immediately handled while edge router
* promotion or route deployment takes place.
* @param packet the packet that would have been dropped
* @return success of operation
*/

private boolean requeueBestEffPkt(IPv6Packet packet)
{

//requeueing is only allowed one second out of every six
long checkTime = System.currentTimeMillis() - timeBestEffAmnesty;
if (checkTime < 0)
{

return false;
}
else if (checkTime < (1000 * controlExec.getTimeScale()))
{

ProtocolStackEvent event = new ProtocolStackEvent(
toString(),
this,

 126

ProtocolStackEvent.getFromNICToInterfaceChannel(0),
packet.getBytes());

try
{

controlExec.talk(event);
}

catch(ChannelException tde)
{

System.out.println(tde.toString());
}

return true;
}
else
{

timeBestEffAmnesty += 5000 * controlExec.getTimeScale();
return false;

}
}

 127

THIS PAGE INTENTIONALLY LEFT BLANK

 128

APPENDIX G: MODIFICATIONS TO BASE PATH INFORMATION
BASE SOURCE CODE

//[cw]
public void processEdgeNotification (EdgeNotification edgeNotif)
{

myBestEffortManager.processEdgeNotification(edgeNotif);
}

// [PS] - created to support inter-service borrowing
/**
* Refreshes the QoS information of a given path.
* @param path the path to update.
* @param deltaDelay[] an array with the delay variations per Service Level.
* @param deltaLossRate[] an array with the loss rate variations per SLevel.
* @return void.
*/

protected void refreshPathQoS(
Path path,
short [] deltaDelay,
short [] deltaLossRate)

{
testMsg("refreshPathQoS(" + path.getPathID().toString() + ")");

PathQoS pathQoS[] = path.getPathQoSArray();

int [][] pathAvailableBW = pathBandwidth(path);

//For every Service Level, check the QoS attributes of this Path
for (byte sl = 0; sl < NUM_OF_SERVICE_LEVELS - 1; sl++)
{

//Set path QoS parameters
if (sl == INT_SERV || sl == DIFF_SERV) //Xie-corey: remove CTRL/BE

from the bandwidth update
{

pathQoS[sl].setAvailableBandwidth(pathAvailableBW[0][sl]);
pathQoS[sl].setAvailableBandwidthIncludingBorrowing(pathAvailableBW[1][sl]);

}
pathQoS[sl].updatePathDelay(deltaDelay[sl]);
pathQoS[sl].updatePathLossRate(deltaLossRate[sl]);

}//end for-loop through all service levels

//[cw]
if (myBestEffortManager.globalCongestionIsOccurring())
{

myBestEffortManager.proactiveMonitor(path,
pathQoS[BEST_EFFORT].getPacketLossRate());

}
else
{

myBestEffortManager.reactiveMonitor(path,
pathQoS[BEST_EFFORT].getPacketLossRate());

}
} // end of refreshPathQoS(Path, dDelay, dLR)

//[PS] - redesigned to support of inter-service borrowing and to improve
//efficiency
/**
* Receives and processes a LSA - extracts the vector of ISAs, determines the
* type of each ISA (Add, Remove or Update) and processes each of them in
* sequence according to their type.
* @param LSA a LinkStateAdvertisement object.
* @return void.
*/

public void processLSA (LinkStateAdvertisement LSA)
{

 129

//[cw] constructor is TOO EARLY a place to call for this value
if ((!iKnowWhatTimeItIs) || (timeScale > 999))
{

timeScale = controlExec.getTimeScale();
iKnowWhatTimeItIs = true;

}

// Increase the LSA counter
iLsaCounter++;
Vector interfaceSAs = LSA.getISAvector();
IPv6Address routerID = LSA.getSenderRouterID();

testMsg("processLSA()");

boolean isNewRouter = false;
Integer thisNodeID = (Integer) htRouterIDtoNodeID.get(routerID.toString());

String strNodeID =
(thisNodeID == null) ? "new router" : thisNodeID.toString();

gui.sendText(
"\nProcess LSA number " + iLsaCounter + "\n" +
"\tRouter / Node ID: \t" + routerID + " / " + strNodeID);

if (thisNodeID == null) // LSA is from a new NODE
{

// If it is a New Node, assign it a new NodeID
// then place the router in the router/node and node/router look-up tables
thisNodeID = new Integer(iNextNodeID++);

htRouterIDtoNodeID.put(routerID.toString(), thisNodeID);
htNodeIDtoRouterID.put(thisNodeID, routerID);
isNewRouter = true;

}// End if for new router detection

// Step through the list of ISA's and process each according to its type
Enumeration enumISAs = interfaceSAs.elements();
while (enumISAs.hasMoreElements()) // Step through each ISA in turn
{

testMsg("Start processing new ISA");
InterfaceSA thisISA = (InterfaceSA) enumISAs.nextElement();
byte type = thisISA.getInterfaceSAType();

// Use simple if structure to determine the type of ISA
switch (type)
{

case InterfaceSA.UPDATE: //Update Interface type

try
{

testMsg("ISA of type UPDATE. Going to update interface...");
gui.sendText("ISA of type UPDATE. Going to update interface...");
updateInterface(thisISA, thisNodeID, routerID, isNewRouter);
isNewRouter = false;

}
catch (Exception e)
{

gui.sendText("!!!An exception occurred in updating interface!");
e.printStackTrace();

}
break;

case InterfaceSA.REMOVE: // Remove Interface type
try
{

testMsg("ISA of type REMOVE. Going to remove interface");
gui.sendText("ISA of type REMOVE. Going to remove interface...");
removeInterface(thisISA, thisNodeID, routerID);
displayPIB();

}

 130

catch (Exception e)
{

gui.sendText("!!!An exception occurred in removing interface!");
e.printStackTrace();

}
break;

case InterfaceSA.SILENT: //[TW] Silent Interface type
try
{

gui.sendText("ISA of type SILENT.");
//[cw] The solution developed below is conservative pending
// further investigation of how to administer and rebuild the
// PIB in this scenario. For BE, the path's BE boolean is never
// reset so this path will never be assigned BE traffic again.
// When the BET receives code RED, it erases that path and replaces
// it with the alternate for that destination. So...if the SILENT
// message was due to a temporary network hiccup, resources will be
// wasted. Somehow, the PIB needs to "heal" itself here. For now,
// the working solution is to create a new boolean member of inner
// class Path and reference that to determine if the path is usable.
//[cw] advise affected edge routers of broken BE paths
IPv6Address sInterfaceAdd = thisISA.getInterfaceIP();
InterfaceInfo sInterfaceInfo = (InterfaceInfo)

(htInterfaces.get(sInterfaceAdd.toString()));
Enumeration allAffectedPaths = sInterfaceInfo.getPathIDs().elements();
while (allAffectedPaths.hasMoreElements())
{

Integer thisPathID = (Integer) allAffectedPaths.nextElement();
Path thisPath = (Path) htPaths.get(thisPathID);
if ((thisPath.bBestEffortTraffic) && thisPath.bConnected)
{

myBestEffortManager.handleBEpathFailure(thisPathID.intValue());
}

thisPath.bConnected = false;//[cw]
the path is no longer connected

}

//actions to take left for further research
}
catch (Exception e)
{

gui.sendText("!!!An exception occurred in processing interface slient
message!");

e.printStackTrace();
}
break;

default: // Undefined type of ISA
gui.sendText("Undefined type of ISA.");

}

} // End while statement processing vector of ISAs

} // End processLSA()

//[cw]
/**
* Implementation of the First Shortest Path algorithm.
* @param srcRterID the IPv6 address of the source router.
* @param destRterID the IPv6 address of the destination router.
* @return the required path or null if no path was found.
*/
private Path findPathFSP(IPv6Address srcRterID, IPv6Address destRterID)
{

testMsg("findPathFSP()");

InterfaceInfo interfaceInformation =
(InterfaceInfo) htInterfaces.get(srcRterID.toString());

 131

int sourceNodeID = ((InterfaceInfo) htInterfaces
.get(srcRterID.toString())).getNodeID().intValue();

int destNodeID = ((InterfaceInfo) htInterfaces
.get(destRterID.toString())).getNodeID().intValue();

Path bestPath = null;

Hashtable table = new Hashtable();

//labeled compound statement
stop:
{

for (int i = 1; i < MAX_HOP_COUNT; i++)
{

testMsg("Hop count = " + i);
table = aPI[sourceNodeID][destNodeID][i];
Enumeration enum = table.elements();

if (enum.hasMoreElements())
{

//Cycle through each of the paths of the current hop count, between
//source and destination nodes
while (enum.hasMoreElements())
{

Integer currentPathID = (Integer) enum.nextElement();

// Extract current path information
bestPath = (Path) htPaths.get(currentPathID);

if ((!bestPath.bBestEffortTraffic) && (bestPath.bestEffortTrafficCondition
!= Path.RED))

{

int availableBandwidth =
bestPath.getPathServiceLevelQoS(BEST_EFFORT)

.getAvailableBandwidth();

//
// If available BW is greater than a minimum, the flow is admited
if (availableBandwidth >= Best_Effort_Minimum_Bandwidth) //Xie-jan02
{

gui.sendText(
"\t The selected path is:\t" + bestPath.toString() + "\n" +
"\t Available bandwidth: \t" + availableBandwidth + "kpbs");

break stop;
}//End of if structure

}
else
{

bestPath = null;
}

}//End of while-loop

}//End of if structure

}//End of for-loop

}//End of labeled stop structure

return bestPath;

}//End of findPathFSP() for Best Effort Service

/**

 132

* Implementation of the Shortest Widest Path algorithm for Best Effort.
* The admission procedure for BE requires revision. Currently, a BE flow is
* admitted if there is more than a minumum amount of path available BW in the BE svc

level.
* @param srcRterID the IPv6 address of the source router.
* @param destRterID the IPv6 address of the destination router.
* @return the required path or null if no path was found.
*/
private Path findPathSWP(IPv6Address srcRterID, IPv6Address destRterID)
{

testMsg("findPathSWP()");

InterfaceInfo interfaceInformation =
(InterfaceInfo) htInterfaces.get(srcRterID.toString());

int sourceNodeID = ((InterfaceInfo) htInterfaces
.get(srcRterID.toString())).getNodeID().intValue();

int destNodeID = ((InterfaceInfo) htInterfaces
.get(destRterID.toString())).getNodeID().intValue();

Path thisPath = null;
Path bestPath = null;

int thisAvailableBandwidth = 0;
int bestAvailableBandwidth = 0;

Hashtable table1 = new Hashtable();

for (int i = 1; i < MAX_HOP_COUNT; i++)
{

testMsg("Hop count = " + i);
table1 = aPI[sourceNodeID][destNodeID][i];
Enumeration enum1 = table1.elements();

if (enum1.hasMoreElements())
{

//Cycle through each of the paths of the current hop count, between
//source and destination nodes
while (enum1.hasMoreElements())
{

Integer currentPathID = (Integer) enum1.nextElement();

// Extract current path information
thisPath = (Path) htPaths.get(currentPathID);

thisAvailableBandwidth =
thisPath.getPathServiceLevelQoS(BEST_EFFORT)

.getAvailableBandwidth();

if ((!thisPath.bBestEffortTraffic) && (thisPath.bestEffortTrafficCondition !=
Path.RED))

{
if (thisAvailableBandwidth > bestAvailableBandwidth)
{

bestPath = thisPath;
bestAvailableBandwidth = thisAvailableBandwidth;

}
}

}//End of while-loop

}//End of if structure

}//End of for-loop

 133

if (bestPath != null)
{
gui.sendText("\t The selected path is:\t" + bestPath.toString() + "\n" +

"\t Available bandwidth: \t" + bestAvailableBandwidth + " kbps");
}

return bestPath;

}//End of findPathSWP for Best Effort Service

//[cw]
/**
* Implementation of the Shortest Widest Most Disjoint Path algorithm for Best Effort.
* The admission procedure for BE requires revision. Currently, a BE flow is
* admitted if there is more than a minumum amount of path available BW in the BE svc

level.
* @param srcRterID the IPv6 address of the source router.
* @param destRterID the IPv6 address of the destination router.
* @return the required path or null if no path was found.
*/
private Path findPathSWMDP(IPv6Address srcRterID, IPv6Address destRterID, Path

disjointPath)
{

testMsg("findPathSWMDP()");

InterfaceInfo interfaceInformation =
(InterfaceInfo) htInterfaces.get(srcRterID.toString());

int sourceNodeID = ((InterfaceInfo) htInterfaces
.get(srcRterID.toString())).getNodeID().intValue();

int destNodeID = ((InterfaceInfo) htInterfaces
.get(destRterID.toString())).getNodeID().intValue();

Path thisPath = null;
Path bestPath = null;

int thisAvailableBandwidth = 0;
int bestAvailableBandwidth = 0;

int thisIntersection = 999;
int bestIntersection = 999;

Hashtable table = new Hashtable();

for (int i = 1; i < MAX_HOP_COUNT; i++)
{

testMsg("Hop count = " + i);
table = aPI[sourceNodeID][destNodeID][i];
Enumeration enum = table.elements();

if (enum.hasMoreElements())
{

//Cycle through each of the paths of the current hop count, between
//source and destination nodes
while (enum.hasMoreElements())
{

Integer currentPathID = (Integer) enum.nextElement();

// Extract current path information
thisPath = (Path) htPaths.get(currentPathID);
thisAvailableBandwidth =

thisPath.getPathServiceLevelQoS(BEST_EFFORT)
.getAvailableBandwidth();

thisIntersection = 0;
Enumeration myLinks = thisPath.getInterfaceSequence().elements();
while (myLinks.hasMoreElements())
{

 134

IPv6Address thisLink = (IPv6Address)
(myLinks.nextElement());

Enumeration linksToAvoid = disjointPath.getInterfaceSequence().elements();
while (linksToAvoid.hasMoreElements())
{

if (thisLink == ((IPv6Address) (linksToAvoid.nextElement())))
{

thisIntersection++;
}

}
}

if ((!thisPath.bBestEffortTraffic) && (thisPath.bestEffortTrafficCondition !=
Path.RED))

{
if (thisIntersection < bestIntersection)
{

bestPath = thisPath;
bestAvailableBandwidth = thisAvailableBandwidth;
bestIntersection = thisIntersection;

}
else if (thisIntersection == bestIntersection)
{

if (thisAvailableBandwidth > bestAvailableBandwidth)
{

bestPath = thisPath;
bestAvailableBandwidth = thisAvailableBandwidth;
bestIntersection = thisIntersection;

}
}

}

}//End of while-loop

}//End of if structure

}//End of for-loop

if (bestPath != null)
{
gui.sendText("\t The selected path is:\t" + bestPath.toString() + "\n" +

"\t Available bandwidth: \t" + bestAvailableBandwidth + " kbps");
}

return bestPath;

}//End of findPathSWMDP for Best Effort Service

//[cw]
/**
* Implementation of the Shortest Widest LeastCongested Path algorithm for Best

Effort.
* The admission procedure for BE requires revision. Currently, a BE flow is
* admitted if there is more than a minumum amount of path available BW in the BE svc

level.
* @param srcRterID the IPv6 address of the source router.
* @param destRterID the IPv6 address of the destination router.
* @return the required path or null if no path was found.
*/
private Path findPathSWLCP(IPv6Address srcRterID, IPv6Address destRterID)
{

testMsg("findPathSWLCP()");

InterfaceInfo interfaceInformation =
(InterfaceInfo) htInterfaces.get(srcRterID.toString());

int sourceNodeID = ((InterfaceInfo) htInterfaces
.get(srcRterID.toString())).getNodeID().intValue();

 135

int destNodeID = ((InterfaceInfo) htInterfaces
.get(destRterID.toString())).getNodeID().intValue();

Path thisPath = null;
Path bestPath = null;

int thisAvailableBandwidth = 0;
int bestAvailableBandwidth = 0;

short thisCongestion = 10000; //100%
short bestCongestion = 10000;

Hashtable table = new Hashtable();

for (int i = 1; i < MAX_HOP_COUNT; i++)
{

testMsg("Hop count = " + i);
table = aPI[sourceNodeID][destNodeID][i];
Enumeration enum = table.elements();

if (enum.hasMoreElements())
{

//Cycle through each of the paths of the current hop count, between
//source and destination nodes
while (enum.hasMoreElements())
{

Integer currentPathID = (Integer) enum.nextElement();

// Extract current path information
thisPath = (Path) htPaths.get(currentPathID);
thisAvailableBandwidth =

thisPath.getPathServiceLevelQoS(BEST_EFFORT)
.getAvailableBandwidth();

thisCongestion = thisPath.getPathQoSArray()[BEST_EFFORT].getPacketLossRate();

if ((!thisPath.bBestEffortTraffic) && (thisPath.bestEffortTrafficCondition !=
Path.RED))

{
if (thisCongestion < bestCongestion)
{

bestPath = thisPath;
bestAvailableBandwidth = thisAvailableBandwidth;
bestCongestion = thisCongestion;

}
else if (thisCongestion == bestCongestion)
{

if (thisAvailableBandwidth > bestAvailableBandwidth)
{

bestPath = thisPath;
bestAvailableBandwidth = thisAvailableBandwidth;
bestCongestion = thisCongestion;

}
}

}

}//End of while-loop

}//End of if structure

}//End of for-loop

if (bestPath != null)
{
gui.sendText("\t The selected path is:\t" + bestPath.toString() + "\n" +

"\t Available bandwidth: \t" + bestAvailableBandwidth + " kbps");
}

return bestPath;

 136

}//End of findPathSWLCP for Best Effort Service

//[cw]
/**
* Updates attributes to reflect new BE traffic.
* @return success of operation
*/

protected boolean initiateBestEffortTraffic()
{

bBestEffortTraffic = true;
bestEffortTrafficCondition = GREEN;
timeBEinitiated = System.currentTimeMillis();
timeLastAdvisorySent = 0;
timeConditionRed = 0;
return true;

}

//[cw]
/**
* Updates attributes to reflect termination of BE traffic.
* @return success of operation
*/

protected boolean terminateBestEffortTraffic()
{

bBestEffortTraffic = false;
bestEffortTrafficCondition = GRAY;
return true;

}

//[cw]
/**
* Updates attributes to reflect new congestion.
* @return success of operation
*/

protected boolean newCongestion()
{

bestEffortTrafficCondition = YELLOW;
timeLastAdvisorySent = System.currentTimeMillis();
return true;

}

//[cw]
/**
* Updates attributes to reflect congestion cleared.
* @return success of operation
*/

protected boolean congestionCleared()
{

bestEffortTrafficCondition = GREEN;
return true;

}

//[cw]
/**
* Updates attributes to reflect being expired for BE traffic.
* @return success of operation
*/

protected boolean expireBEpath()
{

if ((bestEffortTrafficCondition == GREEN) ||
(bestEffortTrafficCondition == YELLOW))

{
bestEffortTrafficCondition = RED;
bBestEffortTraffic = false;
timeConditionRed = System.currentTimeMillis();
return true;

}
else

 137

{
return false;

}
}

//[cw]
/**
* Updates attributes to reflect being unexpired for BE traffic.
* @return success of operation
*/

protected boolean unexpireBEpath()
{

if ((bestEffortTrafficCondition == RED) && bConnected)
{

bestEffortTrafficCondition = GREEN;
return true;

}
else
{

return false;
}

}

 138

APPENDIX H: MODIFICATIONS TO OTHER SAAM SOURCE
CODE

// create IPV6 packet
//[cw]

// For BE traffic, assign random source addresses to simulate internet traffic.
// Note: when a packet leaves Flow Generator with an all-zero source address,
// it will be assigned the sending interface's address. The code below allows
// the Flow Generator to simulate traffic coming in from outside since it gives
// it a non-zero source address. For BE testing, THIS IS THE INTENT.

if (typeOfService.equals("BestEffort"))
{

int randNum = (int) ((9 - 0) * (Math.random()) + 0);
try
{

ipv6Header.setSource(IPv6Address.getByName("1.1.1.1.1.1.1.1.1.1.1.1.1.1.1." +

(new
Integer(randNum)).toString()));

}
catch (UnknownHostException uhe)
{

gui.sendText("Error setting random Best Effort header.");
}

}

/**
* Forwards the packet that was just dequeued from a service level
* queue to the outbound NetworkInterfaceCard.
* @param sl The service level this packet was dequeued from.
* @param packet the byte array representation of this packet.
*/

private void forwardPacket(int sl, byte [] packet)
{

//Since the nextHop was added to the packet before
//the packet was enqueued into the Service Level Queue,
//we strip it off here.

//Xie-dec01:
// Need to scale packet transmission time based on time scale, packet length (bits),
// and link speed (bits/second); insert a 200 ms constant delay temporarily
// May require a timer to determine the end of transmission for this packet.

//[cw] 1000 is for s-to-ms, 8 is for B-to-b

// bits/Kpbs = milliseconds
timeElapsed = System.currentTimeMillis() +

((packet.length * 8) / linkSpeed) * timeScale;

IPv6Address nextHop = null;
try
{

nextHop = new IPv6Address(Array.getSubArray(packet, 0, IPv6Address.length));
}
catch (UnknownHostException uhe)
{

gui.sendText(toString() + ": " + uhe.toString());
}
gui.sendText(" Next Hop: " + nextHop.toString());
IPv6Packet v6Packet = null;
try
{

v6Packet = new IPv6Packet(packet);
}
catch (UnknownHostException uhe)
{

 139

gui.sendText("Scheduler: " + uhe.toString());
}
gui.sendText(" Forwarding packet to my NIC; Payload length = " +

v6Packet.getPayload().length);

ProtocolStackEvent event = new ProtocolStackEvent(
toString(),
this,
outBoundChannel,
packet,
sl,
nextHop);

try
{

controlExec.talk(event);
}
catch (ChannelException tde)
{

gui.sendText(tde.toString());
}

//[cw] corey's proposed solution
long now = System.currentTimeMillis();
if (now < timeElapsed)
{

try
{

Thread.sleep(timeElapsed - now);
}
catch (InterruptedException ie)
{

gui.sendText("Thread sleep problem in module " +
this.toString());

}
}

}//end forwardPacket()

 140

LIST OF REFERENCES

[1] Awduche, D., J. Malcolm, J. Agogbua, M. O’Dell, and J. McManus,
“Requirements for Traffic Engineering Over MPLS”, RFC 2702, September
1999.

[2] Elwalid, A., C. Jin, S. Low, and I. Widjaja, “MATE: MPLS Adaptive Traffic
Engineering”, IEEE INFOCOM 2001.

[3] Feit, Sidnie, TCP/IP: Architecture, Protocols, and Implementation with IPv6
and IP Security, McGraw-Hill, 1999.

[4] Floyd, S., and K. Fall, “Promoting the Use of End-to-end Congestion Control in
the Internet”, IEEE/ACM Transactions on Networking, August 1999.

[5] Gibson, John H. and Dao-Cheng, Kuo, “Design of a dynamic management
capability for the Server and Agent Based Active Network Management
(SAAM) system to support requests for guaranteed Quality of Service traffic
routing and recovery”, Computer Science Department, Naval Postgraduate
School, Monterey, September 2000.

[6] Internet2, www.internet2.edu.

[7] Isenberg, David, “Rise of the Stupid Network”, www.isen.com.

[8] Quek, Henry C., “QoS management with adaptive routing for next generation
Internet”, Computer Science Department, Naval Postgraduate School,
Monterey, March 2000.

[9] Silva, Paulo, “Advanced Quality of Service Management for Next Generation
Internet”, Computer Science Department, Naval Postgraduate School,
Monterey, Septemeber 2001.

[10] Thompson, K., G.J. Miller, and R. Wilder, “Wide-area Internet Traffic Patterns
and Characteristics”, IEEE Network, November 1997.

[11] Turksoyo, Fatih, “Realistic Traffic Generation Capability for SAAM Testbed”,
Computer Science Department, Naval Postgraduate School, Monterey, March
2001.

[12] Vrable, Dean J. and Yarger, John W., “The SAAM architecture: enabling
integrated services”, Computer Science Department, Naval Postgraduate
School, Monterey, September 1999.

[13] Wang, Z., and J. Crowcroft, “QoS Routing for Supporting Resource
Reservation”, IEEE Journal on Selected Areas in Communication, September
1996.

[14] Widmer, J., R. Denda, and M. Mauve, “A Survey on TCP-friendly Congestion
Control”, IEEE Network, May 2001.

 141

[15] Wright, Troy, “Fault Tolerance in the Server and Agent Based Network
Management (SAAM) System”, Computer Science Department, Naval
Postgraduate School, Monterey, September 2001.

[16] Xiao, Xipeng, A. Hannan, B. Bailey, and M. Li, “Traffic Engineering with
MPLS in the Internet”, IEEE Network, March 2000.

[17] Yang, Y., K. Muppala, and S.T. Chanson, “Quality of Service Routing
Algorithms for Bandwidth-Delay Constrained Applications”, ICNP 2001.

 142

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Fort Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. LCDR Chris Eagle
 Naval Postgraduate School
 Monterey, California

4. Professor Geoffrey Xie
 Naval Postgraduate School
 Monterey, California

5. Professor James Bret Michael
 Naval Postgraduate School
 Monterey, California

6. Cary Colwell
 Naval Postgraduate School
 Monterey, California

7. LT Corey Wofford
 Naval Postgraduate School
 Monterey, California

 143

	Corey Wofford
	B.S., Michigan State University, 1995
	I.INTRODUCTION
	A.MOTIVATION
	B.PROBLEM STATEMENT AND APPROACH
	C.THESIS SCOPE
	D.CONTRIBUTIONS OF THIS THESIS
	1.Major Contributions
	2.Minor Contributions

	E.THESIS ORGANIZATION

	II.BACKGROUND
	A.BEST EFFORT VS. QUALITY-OF-SERVICE TRAFFIC
	B.BEST EFFORT ROUTING IN TODAY’S INTERNET
	Intradomain Routing
	a.Static Configuration
	Distance Vector Protocols
	c.Link State Protocols

	2.Interdomain Routing

	C.THE STATE OF THE ART
	1.Routing Solutions
	2.Management Solutions
	3.Traffic Engineering

	III.BUILDING A BETTER BEST EFFORT SOLUTION
	A.CURRENT STATE OF SAAM PROTOTYPE
	B.REQUIREMENTS FOR A BETTER SOLUTION
	1.Security
	2.Light-Weight Routers
	3.Interoperability
	Fault Tolerance
	5.Fairness
	Adaptive Response Mechanisms
	Stability
	8.Intelligent Provisioning
	9.Scalability
	10.Packet Recovery

	C.INSPIRATION
	D.DESIGN
	1.Best Effort Table Agent
	a.Destination Management
	b.Load Balancing
	c.Fault Tolerance

	2.Best Effort Manager
	a.Best Effort Topology Maintenance
	b.Reactive Monitoring
	c.Proactive Monitoring

	3.Routing Algorithms
	a.Shortest Widest Path (SWP)
	b.Shortest Widest Most Disjoint Path (SWMDP)
	c.Shortest Widest Least Congested Path (SWLCP)

	4.Traffic Splitting
	5.Control Timing
	a.Auto-configuration Cycle Time
	b.Redirection Interval
	c.Reversion Interval
	d.Congestion Bypass Time
	e.Path Expiration Interval
	f.Failure Detection / Response Time
	g.Local Resolution Timeout

	6.Messages
	a.Edge Notification
	b.Best Effort Table Entry
	c.CongestionAdvisory

	E.STATE ANALYSIS
	1.Single Node Pair Management
	2.Destination Management
	3.Path Management

	F.DESIGN TRADEOFFS
	1.Maintaining BE Link Provision
	2.Degree of Management Centralization
	3.Management Focus
	4.Granularity of Load Balancing
	5.Granularity of Fairness Enforcement

	IV.SAAM IMPLEMENTATION DETAILS
	A.CHANGES TO EXISTING SAAM CODE
	1.Flow Generator
	a.Elimination of BE Flow Requests
	b.Random Source Addressing for BE Packets

	2.Server Agent
	3.Control Executive
	a.Router Classification Data Members and Get Methods
	b.Router Status Display
	c.BE Management

	4.Demonstration Initiation Information
	5.Flow Request
	6.Flow Routing Table Entry
	7.Message
	8.Routing Algorithm
	a.BE Packet Recognition and Handling
	b.Requeueing Capabilities

	9.Transport Interface
	10.Base Path Information Base
	a.Interfaces for Best Effort Manager
	b.New Routing Algorithms
	c.Inner Class Path
	d.Access Modifiers

	11.Server
	a.Auto-Configuration Cycle Sharing
	b.Communications

	B.ADDITION OF NEW CAPABILITIES
	1.Best Effort Manager
	2.Best Effort Table
	3.Messages
	a.Best Effort Table Entry
	b.Edge Notification
	c.CongestionAdvisory

	V.TESTS AND RESULTS
	A.EDGE ROUTER DISCOVERY AND PACKET REQUEUEING
	1.Test
	2.Results

	B.LOAD BALANCING
	1.Test
	2.Results

	C.CONGESTION BYPASS
	1.Test
	2.Results

	D.FAIRNESS
	1.Test
	2.Results

	E.PERIPHERY UTILIZATION
	1.Test
	2.Results

	F.COMPARATIVE BENEFIT
	1.Test
	2.Results

	VI.CONCLUSIONS AND RECOMMENDATIONS
	A.CONCLUSIONS
	1.Requirements Revisited
	a.Security
	b.Light-Weight Routers
	c.Interoperability
	d.Fault Tolerance
	e.Fairness
	f.Adaptive Response Mechanisms
	g.Stability
	h.Scalability
	i.Intelligent Provisioning
	j.Packet Recovery

	2.Overall

	B.RECOMMENDATIONS FOR FUTURE WORK
	1.A Border Gateway Agent
	2.Security Features
	3.Deployable Agents
	4.Fine Tuning of Parameters
	5.An Even Better Best Effort
	6.Implementation of Other Algorithms
	7.Refinement of Fairness Approach

	APPENDIX A: GLOSSARY
	APPENDIX B: LIST OF ACRONYMS
	APPENDIX C: BEST EFFORT MANAGER SOURCE CODE
	APPENDIX D: BEST EFFORT TABLE AGENT SOURCE CODE
	APPENDIX E: CONGESTION ADVISORY MESSAGE SOURCE CODE
	APPENDIX F: MODIFICATIONS TO ROUTING ALGORITHM SOURCE CODE
	APPENDIX G: MODIFICATIONS TO BASE PATH INFORMATION BASE SOURCE CODE
	APPENDIX H: MODIFICATIONS TO OTHER SAAM SOURCE CODE
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

